Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice-phase clouds are the actual rainmakers

21.07.2015

New meteorological findings from Leipzig help to improve weather and climate predictions

New meteorological findings from Leipzig help to improve weather and climate predictions

Benjamin Franklin was the first to surmise that, even on a hot summer’s day, the raindrops falling on our heads might begin life as ice particles at high altitudes. In the centuries since 1780 it became possible to probe the atmosphere directly by balloon and by aircraft, and remotely from the ground and from satellites. These observations have confirmed Franklin’s suspicion. However, two questions remain: how large are the fractions of rain produced by liquid clouds and by ice clouds? And how variable are they over the globe and over time?

A new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, gives us the answers. The new study confirms the prevalence of rain from ice clouds at mid-latitudes, and shows rain from ice clouds prevails to an astonishing extent, according to Johannes Mulmenstadt, a scientist at the Institute of Meteorology at Universitat Leipzig and the study’s lead author.

Over land outside the tropics, only one percent of rain events involve ice-free clouds, according to the new study. Even in the tropics, where rain from liquid clouds is more common, there is a remarkable contrast between rain events over land and ocean, according to Mulmenstadt.

The technological breakthrough that made the study possible is three satellites, designed and launched by NASA and its partners in Europe and Japan, that fly in close formation and provide a picture of the Earth’s atmosphere far clearer than any of the constellation’s individual components. Over the course of five years, the satellites, named Aqua, Calipso, and CloudSat, have taken snapshots of over 50 million raining clouds, which are made freely available to scientists worldwide. Among the instruments the satellites carry are a cloud radar that detects large raindrops and ice crystals; a powerful green laser beam and light detector sensitive to small liquid droplets and can distinguish between liquid and ice clouds; and a spectroradiometer that measures the reflection of sunlight from clouds and infers cloud properties like the total liquid and ice content and the size of cloud droplets or ice particles near the top of the cloud.

“Using the combined information from these satellites, we now know where on Earth rain falls from liquid clouds and where it falls from ice clouds, and the results are striking,” Mulmenstadt said.

The new findings may be a sign of human influence on the global water cycle, according to the study’s authors.

Liquid clouds tend to produce drizzle, while ice clouds produce more intense rain. Tiny particles referred to as “aerosols” that are suspended in the atmosphere may be able to influence clouds in their infancy and determine whether they grow into drizzling liquid clouds or intensely raining ice clouds. And these aerosols are more abundant over land, in part due to the combustion processes that power human activity, according to the study’s authors.

“There are many other differences between the marine and continental atmospheres, but one big one is aerosols. How much of a role they play—and whether the preindustrial atmosphere may indeed have seen more drizzle and less intense rainfall than the present day atmosphere—is the question we’ll be addressing next,” said Mulmenstadt.

“The results of this study are consistent with an aerosol effect: clouds over land have a bigger droplet size gap to overcome before they can begin to drizzle than clouds over the ocean. But that by itself is not yet enough to prove an aerosol influence.”

The study’s results also provide an observational crosscheck that may be useful for fine-tuning atmospheric models for weather and climate prediction. The portrait that these models paint of rain is less accurate than their representation of other processes. Frequency and intensity of rain in the models are especially troublesome, Mulmenstadt said.

“Checking whether models produce virtually all their rain over land from ice clouds, as our observations say they should, may be a fruitful way to attack this problem,” he said.

In light of the importance of rain for aspects of life from agriculture to transportation disruptions to widespread flood damage, this is an area in urgent need of continued research, Mulmenstadt added.

publication:
"Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals", Johannes Mülmenstädt, Odran Sourdeval, Julien Delanoë and Johannes Quaas, Geophysical Research Letters. Juli 2015. DOI: 10.1002/2015GL064604

further information:

Dr. Johannes Mülmenstädt
Leipzig Institute for Meteorology - LIM
phone: +49 341 97-32937
e-mail: johannes.muelmenstaedt@uni-leipzig.de
Web: http://www.uni-leipzig.de/~meteo/en/index.php

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL064604/abstract link to the publication

Katrin Henneberg | Universität Leipzig

Further reports about: Atmosphere Geophysical Research clouds ice clouds ice particles raindrops satellites

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>