Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice-phase clouds are the actual rainmakers

21.07.2015

New meteorological findings from Leipzig help to improve weather and climate predictions

New meteorological findings from Leipzig help to improve weather and climate predictions

Benjamin Franklin was the first to surmise that, even on a hot summer’s day, the raindrops falling on our heads might begin life as ice particles at high altitudes. In the centuries since 1780 it became possible to probe the atmosphere directly by balloon and by aircraft, and remotely from the ground and from satellites. These observations have confirmed Franklin’s suspicion. However, two questions remain: how large are the fractions of rain produced by liquid clouds and by ice clouds? And how variable are they over the globe and over time?

A new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, gives us the answers. The new study confirms the prevalence of rain from ice clouds at mid-latitudes, and shows rain from ice clouds prevails to an astonishing extent, according to Johannes Mulmenstadt, a scientist at the Institute of Meteorology at Universitat Leipzig and the study’s lead author.

Over land outside the tropics, only one percent of rain events involve ice-free clouds, according to the new study. Even in the tropics, where rain from liquid clouds is more common, there is a remarkable contrast between rain events over land and ocean, according to Mulmenstadt.

The technological breakthrough that made the study possible is three satellites, designed and launched by NASA and its partners in Europe and Japan, that fly in close formation and provide a picture of the Earth’s atmosphere far clearer than any of the constellation’s individual components. Over the course of five years, the satellites, named Aqua, Calipso, and CloudSat, have taken snapshots of over 50 million raining clouds, which are made freely available to scientists worldwide. Among the instruments the satellites carry are a cloud radar that detects large raindrops and ice crystals; a powerful green laser beam and light detector sensitive to small liquid droplets and can distinguish between liquid and ice clouds; and a spectroradiometer that measures the reflection of sunlight from clouds and infers cloud properties like the total liquid and ice content and the size of cloud droplets or ice particles near the top of the cloud.

“Using the combined information from these satellites, we now know where on Earth rain falls from liquid clouds and where it falls from ice clouds, and the results are striking,” Mulmenstadt said.

The new findings may be a sign of human influence on the global water cycle, according to the study’s authors.

Liquid clouds tend to produce drizzle, while ice clouds produce more intense rain. Tiny particles referred to as “aerosols” that are suspended in the atmosphere may be able to influence clouds in their infancy and determine whether they grow into drizzling liquid clouds or intensely raining ice clouds. And these aerosols are more abundant over land, in part due to the combustion processes that power human activity, according to the study’s authors.

“There are many other differences between the marine and continental atmospheres, but one big one is aerosols. How much of a role they play—and whether the preindustrial atmosphere may indeed have seen more drizzle and less intense rainfall than the present day atmosphere—is the question we’ll be addressing next,” said Mulmenstadt.

“The results of this study are consistent with an aerosol effect: clouds over land have a bigger droplet size gap to overcome before they can begin to drizzle than clouds over the ocean. But that by itself is not yet enough to prove an aerosol influence.”

The study’s results also provide an observational crosscheck that may be useful for fine-tuning atmospheric models for weather and climate prediction. The portrait that these models paint of rain is less accurate than their representation of other processes. Frequency and intensity of rain in the models are especially troublesome, Mulmenstadt said.

“Checking whether models produce virtually all their rain over land from ice clouds, as our observations say they should, may be a fruitful way to attack this problem,” he said.

In light of the importance of rain for aspects of life from agriculture to transportation disruptions to widespread flood damage, this is an area in urgent need of continued research, Mulmenstadt added.

publication:
"Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals", Johannes Mülmenstädt, Odran Sourdeval, Julien Delanoë and Johannes Quaas, Geophysical Research Letters. Juli 2015. DOI: 10.1002/2015GL064604

further information:

Dr. Johannes Mülmenstädt
Leipzig Institute for Meteorology - LIM
phone: +49 341 97-32937
e-mail: johannes.muelmenstaedt@uni-leipzig.de
Web: http://www.uni-leipzig.de/~meteo/en/index.php

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL064604/abstract link to the publication

Katrin Henneberg | Universität Leipzig

Further reports about: Atmosphere Geophysical Research clouds ice clouds ice particles raindrops satellites

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>