Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice-phase clouds are the actual rainmakers

21.07.2015

New meteorological findings from Leipzig help to improve weather and climate predictions

New meteorological findings from Leipzig help to improve weather and climate predictions

Benjamin Franklin was the first to surmise that, even on a hot summer’s day, the raindrops falling on our heads might begin life as ice particles at high altitudes. In the centuries since 1780 it became possible to probe the atmosphere directly by balloon and by aircraft, and remotely from the ground and from satellites. These observations have confirmed Franklin’s suspicion. However, two questions remain: how large are the fractions of rain produced by liquid clouds and by ice clouds? And how variable are they over the globe and over time?

A new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, gives us the answers. The new study confirms the prevalence of rain from ice clouds at mid-latitudes, and shows rain from ice clouds prevails to an astonishing extent, according to Johannes Mulmenstadt, a scientist at the Institute of Meteorology at Universitat Leipzig and the study’s lead author.

Over land outside the tropics, only one percent of rain events involve ice-free clouds, according to the new study. Even in the tropics, where rain from liquid clouds is more common, there is a remarkable contrast between rain events over land and ocean, according to Mulmenstadt.

The technological breakthrough that made the study possible is three satellites, designed and launched by NASA and its partners in Europe and Japan, that fly in close formation and provide a picture of the Earth’s atmosphere far clearer than any of the constellation’s individual components. Over the course of five years, the satellites, named Aqua, Calipso, and CloudSat, have taken snapshots of over 50 million raining clouds, which are made freely available to scientists worldwide. Among the instruments the satellites carry are a cloud radar that detects large raindrops and ice crystals; a powerful green laser beam and light detector sensitive to small liquid droplets and can distinguish between liquid and ice clouds; and a spectroradiometer that measures the reflection of sunlight from clouds and infers cloud properties like the total liquid and ice content and the size of cloud droplets or ice particles near the top of the cloud.

“Using the combined information from these satellites, we now know where on Earth rain falls from liquid clouds and where it falls from ice clouds, and the results are striking,” Mulmenstadt said.

The new findings may be a sign of human influence on the global water cycle, according to the study’s authors.

Liquid clouds tend to produce drizzle, while ice clouds produce more intense rain. Tiny particles referred to as “aerosols” that are suspended in the atmosphere may be able to influence clouds in their infancy and determine whether they grow into drizzling liquid clouds or intensely raining ice clouds. And these aerosols are more abundant over land, in part due to the combustion processes that power human activity, according to the study’s authors.

“There are many other differences between the marine and continental atmospheres, but one big one is aerosols. How much of a role they play—and whether the preindustrial atmosphere may indeed have seen more drizzle and less intense rainfall than the present day atmosphere—is the question we’ll be addressing next,” said Mulmenstadt.

“The results of this study are consistent with an aerosol effect: clouds over land have a bigger droplet size gap to overcome before they can begin to drizzle than clouds over the ocean. But that by itself is not yet enough to prove an aerosol influence.”

The study’s results also provide an observational crosscheck that may be useful for fine-tuning atmospheric models for weather and climate prediction. The portrait that these models paint of rain is less accurate than their representation of other processes. Frequency and intensity of rain in the models are especially troublesome, Mulmenstadt said.

“Checking whether models produce virtually all their rain over land from ice clouds, as our observations say they should, may be a fruitful way to attack this problem,” he said.

In light of the importance of rain for aspects of life from agriculture to transportation disruptions to widespread flood damage, this is an area in urgent need of continued research, Mulmenstadt added.

publication:
"Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals", Johannes Mülmenstädt, Odran Sourdeval, Julien Delanoë and Johannes Quaas, Geophysical Research Letters. Juli 2015. DOI: 10.1002/2015GL064604

further information:

Dr. Johannes Mülmenstädt
Leipzig Institute for Meteorology - LIM
phone: +49 341 97-32937
e-mail: johannes.muelmenstaedt@uni-leipzig.de
Web: http://www.uni-leipzig.de/~meteo/en/index.php

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL064604/abstract link to the publication

Katrin Henneberg | Universität Leipzig

Further reports about: Atmosphere Geophysical Research clouds ice clouds ice particles raindrops satellites

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>