Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans adding less nitrogen to oceans than models predict

07.01.2016

A new study finds that human activities are likely contributing far less nitrogen to the open ocean than many atmospheric models suggest. That's generally good news, but it also nullifies a potential side benefit to additional nitrogen, says Meredith Hastings, associate professor of Earth, environmental and planetary sciences at Brown University and one of the study's co-authors.

"People may not be polluting the ocean as much as we thought, which is a good thing," said Hastings, who is also a fellow at the Institute at Brown for Environment and Society. "However, additional nitrogen could potentially stimulate the ocean's ability to draw down carbon dioxide out the atmosphere, which might counteract carbon emissions to some extent. But if we're not adding as much nitrogen, we're not getting that potential side benefit in the carbon cycle."


A new study suggests that most of the nitrogen deposited from the atmosphere into the open ocean comes from natural sources, not humans. The findings suggest humans aren't disrupting ocean biogeochemistry as much as some models might predict.

Credit: Hastings lab / Brown University

The research is published online in Proceedings of the National Academy of Sciences.

Nitrogen is the most abundant gas in the atmosphere and a key ecological nutrient, supporting the growth of plants and providing a food source for microorganisms. But excess nitrogen in aquatic environments can cause overgrowth of algae and other aquatic plants, which can throw ecosystems out of balance. Large algal blooms, for example, can deplete waterways of oxygen, leading to mass fish kills and other problems.

But along with the problems, there's a potential upside to excess nitrogen. An influx of nitrogen into the oceans could stimulate the growth of phytoplankton and other photosynthetic organisms. Photosynthesis consumes carbon dioxide, so an increase in biological activity could increase the oceans' ability to draw down atmospheric CO2.

Humans pour tons of additional nitrogen into the atmosphere through the burning of fossil fuels and biomass. Some of that nitrogen is carried by the wind and deposited in the oceans, but just how much of it reaches the vast open ocean far from coastlines isn't clear. Some atmospheric models estimate that 80 percent of nitrogen deposition to the ocean can be traced to humans, which would represent a huge influx of new nitrogen.

"The models generally assume that the ocean is a passive receptor of nitrogen," Hastings said. "We wanted to find out if that's true or if the ocean itself might play a substantial role in emitting nitrogen. If the ocean is playing a role, then this nitrogen deposition isn't all new nitrogen, from the ocean's perspective. It's recycled."

For their study, Hastings and her colleagues looked at the concentration and composition of organic nitrogen in samples of air and rainwater taken on Bermuda over the course of a year. Bermuda, about 600 miles off the eastern U.S. coast, offers scientists a natural test bed for studying the origin of atmospheric pollutants. The weather over the island is dominated by different air masses at different times of year. For much of the year, tropical air blowing northward from the open ocean dominates. But in the winter, a shift in atmospheric pressure pulls in air masses from the continental United States. Those continental air masses bring a host of industrial and agricultural pollutants with them.

"We have these distinct air masses coming in at different times," Hastings said. "So we're able to separate what's coming from anthropogenic sources and what's coming from marine sources."

The study showed that rather than being correlated with the source of air masses, the concentration of aerosol nitrogen is much more tightly correlated to measures of biological activity in the surrounding ocean. As biological activity (measured by a metric called gross primary productivity) increases, so does the concentration of organic nitrogen found in air samples. The molecular makeup of those nitrogen aerosols is also consistent with a marine origin, the researchers found.

"These marine biological processes appear to be producing compounds that are reacting in the atmosphere to create this organic nitrogen," Hastings said.

Organic nitrogen in rainwater samples appeared to contain somewhat more of a human signature, but was still dominated by marine sources, the study showed. Taken together, the results suggest that the ocean plays a much more substantial role in recycling organic nitrogen than was previously thought and that the role of human-derived sources is overestimated in atmospheric models.

This new finding completes a nitrogen puzzle that Hastings and her colleagues have been trying to piece together over the last few years. Organic nitrogen is not the only source of nitrogen deposition to the oceans. In previous work, Hastings and her team studied oceanic deposition of two inorganic nitrogen-based compounds: nitrate and ammonium. Those studies suggested that while a significant portion of nitrate can be traced to human sources, most ammonium deposited in the ocean is, like organic nitrogen, largely recycled from marine sources.

Combining results from this new work and their previous work on inorganic nitrogen sources, Hastings and her colleagues estimate that about 27 percent of total nitrogen deposition in the open ocean is derived from human sources -- much less than the 80 percent suggested by atmospheric models. That has implications for the idea that nitrogen pollution might help to counteract carbon emissions.

"If we're not putting as much new nitrogen into the open ocean, then we're not stimulating carbon drawdown," Hastings said. "So the impact on the carbon cycle is diminished."

The findings also suggest that more work needs to be done to better represent nitrogen deposition in atmospheric models.

"The models are clearly not getting this right," Hastings said. "We're lacking some understanding here, and that's really interesting to explore."

###

Other authors on the paper were Katye Altieri and Sarah Fawcett,University of Cape Town; Andrew J. Peters, Bermuda Institute of Ocean Sciences; and Daniel M. Sigman, Princeton University. The work was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Kevin Stacey | EurekAlert!

More articles from Earth Sciences:

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

nachricht The significance of seaweed
16.09.2016 | King Abdullah University of Science and Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>