Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans adding less nitrogen to oceans than models predict

07.01.2016

A new study finds that human activities are likely contributing far less nitrogen to the open ocean than many atmospheric models suggest. That's generally good news, but it also nullifies a potential side benefit to additional nitrogen, says Meredith Hastings, associate professor of Earth, environmental and planetary sciences at Brown University and one of the study's co-authors.

"People may not be polluting the ocean as much as we thought, which is a good thing," said Hastings, who is also a fellow at the Institute at Brown for Environment and Society. "However, additional nitrogen could potentially stimulate the ocean's ability to draw down carbon dioxide out the atmosphere, which might counteract carbon emissions to some extent. But if we're not adding as much nitrogen, we're not getting that potential side benefit in the carbon cycle."


A new study suggests that most of the nitrogen deposited from the atmosphere into the open ocean comes from natural sources, not humans. The findings suggest humans aren't disrupting ocean biogeochemistry as much as some models might predict.

Credit: Hastings lab / Brown University

The research is published online in Proceedings of the National Academy of Sciences.

Nitrogen is the most abundant gas in the atmosphere and a key ecological nutrient, supporting the growth of plants and providing a food source for microorganisms. But excess nitrogen in aquatic environments can cause overgrowth of algae and other aquatic plants, which can throw ecosystems out of balance. Large algal blooms, for example, can deplete waterways of oxygen, leading to mass fish kills and other problems.

But along with the problems, there's a potential upside to excess nitrogen. An influx of nitrogen into the oceans could stimulate the growth of phytoplankton and other photosynthetic organisms. Photosynthesis consumes carbon dioxide, so an increase in biological activity could increase the oceans' ability to draw down atmospheric CO2.

Humans pour tons of additional nitrogen into the atmosphere through the burning of fossil fuels and biomass. Some of that nitrogen is carried by the wind and deposited in the oceans, but just how much of it reaches the vast open ocean far from coastlines isn't clear. Some atmospheric models estimate that 80 percent of nitrogen deposition to the ocean can be traced to humans, which would represent a huge influx of new nitrogen.

"The models generally assume that the ocean is a passive receptor of nitrogen," Hastings said. "We wanted to find out if that's true or if the ocean itself might play a substantial role in emitting nitrogen. If the ocean is playing a role, then this nitrogen deposition isn't all new nitrogen, from the ocean's perspective. It's recycled."

For their study, Hastings and her colleagues looked at the concentration and composition of organic nitrogen in samples of air and rainwater taken on Bermuda over the course of a year. Bermuda, about 600 miles off the eastern U.S. coast, offers scientists a natural test bed for studying the origin of atmospheric pollutants. The weather over the island is dominated by different air masses at different times of year. For much of the year, tropical air blowing northward from the open ocean dominates. But in the winter, a shift in atmospheric pressure pulls in air masses from the continental United States. Those continental air masses bring a host of industrial and agricultural pollutants with them.

"We have these distinct air masses coming in at different times," Hastings said. "So we're able to separate what's coming from anthropogenic sources and what's coming from marine sources."

The study showed that rather than being correlated with the source of air masses, the concentration of aerosol nitrogen is much more tightly correlated to measures of biological activity in the surrounding ocean. As biological activity (measured by a metric called gross primary productivity) increases, so does the concentration of organic nitrogen found in air samples. The molecular makeup of those nitrogen aerosols is also consistent with a marine origin, the researchers found.

"These marine biological processes appear to be producing compounds that are reacting in the atmosphere to create this organic nitrogen," Hastings said.

Organic nitrogen in rainwater samples appeared to contain somewhat more of a human signature, but was still dominated by marine sources, the study showed. Taken together, the results suggest that the ocean plays a much more substantial role in recycling organic nitrogen than was previously thought and that the role of human-derived sources is overestimated in atmospheric models.

This new finding completes a nitrogen puzzle that Hastings and her colleagues have been trying to piece together over the last few years. Organic nitrogen is not the only source of nitrogen deposition to the oceans. In previous work, Hastings and her team studied oceanic deposition of two inorganic nitrogen-based compounds: nitrate and ammonium. Those studies suggested that while a significant portion of nitrate can be traced to human sources, most ammonium deposited in the ocean is, like organic nitrogen, largely recycled from marine sources.

Combining results from this new work and their previous work on inorganic nitrogen sources, Hastings and her colleagues estimate that about 27 percent of total nitrogen deposition in the open ocean is derived from human sources -- much less than the 80 percent suggested by atmospheric models. That has implications for the idea that nitrogen pollution might help to counteract carbon emissions.

"If we're not putting as much new nitrogen into the open ocean, then we're not stimulating carbon drawdown," Hastings said. "So the impact on the carbon cycle is diminished."

The findings also suggest that more work needs to be done to better represent nitrogen deposition in atmospheric models.

"The models are clearly not getting this right," Hastings said. "We're lacking some understanding here, and that's really interesting to explore."

###

Other authors on the paper were Katye Altieri and Sarah Fawcett,University of Cape Town; Andrew J. Peters, Bermuda Institute of Ocean Sciences; and Daniel M. Sigman, Princeton University. The work was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.

Kevin Stacey | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>