Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge 2014 British storms shook cliffs more than ever previously recorded

04.02.2015

The violent winter storms that rocked the United Kingdom in 2014 had the power to physically shake cliffs to a degree in excess of anything recorded previously, according to a new study.

A team at Plymouth University in the United Kingdom used seismometers, laser scanning and video cameras to evaluate the impact of the massive waves – up to eight meters (26 feet) high – that struck the cliffs in Porthleven, West Cornwall, during January and February of last year.


Storm waves at Porthleven, Cornwall 2014

Claire Earlie

In a paper accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, the team from the Coastal Processes Research Group at Plymouth University found that the level of shaking was of an order of magnitude greater than ever previously recorded.

They also recorded 1,350 cubic meters (47,675 cubic feet) of cliff face being eroded along a 300-meter (984-foot) stretch of coastline in just two weeks – a cliff retreat rate more than 100 times larger than the long-term average.

“Coastal cliff erosion from storm waves is observed worldwide but the processes are notoriously difficult to measure during extreme storm wave conditions when most erosion normally occurs, limiting our understanding of cliff processes,” said Claire Earlie, a PhD student at the School of Marine Science and Engineering at Plymouth University, and lead author of the new study.

“Over January-February 2014, during the most energetic Atlantic storm period since at least 1950, with deep water significant wave heights of six to eight meters (20 to 26 feet), cliff-top ground motions showed vertical ground displacements in excess of 50 to 100 microns; an order of magnitude larger than observations made previously anywhere in the world,” she said.

Using seismometers on loan from Scripps Institution of Oceanography in La Jolla, Calif., Earlie and the team embedded the instruments seven meters (23 feet) from the cliff edge. Within two weeks, they were just five meters (16 feet) from the edge, such had been the rate of erosion.

Terrestrial laser scanner surveys conducted from the beach also revealed a cliff face volume loss two orders of magnitude larger than the long-term erosion rate.

“The results imply that erosion of coastal cliffs exposed to extreme storm waves is highly episodic and that long-term rates of cliff erosion will depend on the frequency and severity of extreme storm wave impacts,” said Paul Russell, a professor in the School of Marine Science and Engineering at Plymouth University, who helped to supervise the project and is a co-author of the new paper.

“Our coastline acts as a natural barrier to the sea, but what we’ve seen right across South West England is unprecedented damage and change – from huge amounts of sand being stripped from beaches to rapid erosion of cliffs,” added Gerd Masselink, professor of coastal geomorphology in the School of Marine Science and Engineering at Plymouth University and a co-author of the new study.

“These figures will help to explain some of the invisible forces being brought to bear on our coastal structures, and highlight the risk of sudden cliff damage,” he added.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

 Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:
http://onlinelibrary.wiley.com/doi/10.1002/2014GL062534/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Coastal cliff ground motions and response to extreme storm waves”

Authors:
Claire S. Earlie: School of Marine Science and Engineering, Plymouth University, Plymouth, UK;

Adam, P. Young: Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;

Gerd Masselink and Paul E. Russell: School of Marine Science and Engineering, Plymouth University, Plymouth, UK.

Contact information for the authors:
Claire S. Earlie: +44 7590 025745, claire.earlie@plymouth.ac.uk


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Plymouth Contact:
Andrew Merrington
+44 (0)1752 588003
andrew.merrington@plymouth.ac.uk

Nanci Bompey | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Coastal Geophysical Marine Oceanography Plymouth ground motions long-term storms waves

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>