Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge 2014 British storms shook cliffs more than ever previously recorded

04.02.2015

The violent winter storms that rocked the United Kingdom in 2014 had the power to physically shake cliffs to a degree in excess of anything recorded previously, according to a new study.

A team at Plymouth University in the United Kingdom used seismometers, laser scanning and video cameras to evaluate the impact of the massive waves – up to eight meters (26 feet) high – that struck the cliffs in Porthleven, West Cornwall, during January and February of last year.


Storm waves at Porthleven, Cornwall 2014

Claire Earlie

In a paper accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union, the team from the Coastal Processes Research Group at Plymouth University found that the level of shaking was of an order of magnitude greater than ever previously recorded.

They also recorded 1,350 cubic meters (47,675 cubic feet) of cliff face being eroded along a 300-meter (984-foot) stretch of coastline in just two weeks – a cliff retreat rate more than 100 times larger than the long-term average.

“Coastal cliff erosion from storm waves is observed worldwide but the processes are notoriously difficult to measure during extreme storm wave conditions when most erosion normally occurs, limiting our understanding of cliff processes,” said Claire Earlie, a PhD student at the School of Marine Science and Engineering at Plymouth University, and lead author of the new study.

“Over January-February 2014, during the most energetic Atlantic storm period since at least 1950, with deep water significant wave heights of six to eight meters (20 to 26 feet), cliff-top ground motions showed vertical ground displacements in excess of 50 to 100 microns; an order of magnitude larger than observations made previously anywhere in the world,” she said.

Using seismometers on loan from Scripps Institution of Oceanography in La Jolla, Calif., Earlie and the team embedded the instruments seven meters (23 feet) from the cliff edge. Within two weeks, they were just five meters (16 feet) from the edge, such had been the rate of erosion.

Terrestrial laser scanner surveys conducted from the beach also revealed a cliff face volume loss two orders of magnitude larger than the long-term erosion rate.

“The results imply that erosion of coastal cliffs exposed to extreme storm waves is highly episodic and that long-term rates of cliff erosion will depend on the frequency and severity of extreme storm wave impacts,” said Paul Russell, a professor in the School of Marine Science and Engineering at Plymouth University, who helped to supervise the project and is a co-author of the new paper.

“Our coastline acts as a natural barrier to the sea, but what we’ve seen right across South West England is unprecedented damage and change – from huge amounts of sand being stripped from beaches to rapid erosion of cliffs,” added Gerd Masselink, professor of coastal geomorphology in the School of Marine Science and Engineering at Plymouth University and a co-author of the new study.

“These figures will help to explain some of the invisible forces being brought to bear on our coastal structures, and highlight the risk of sudden cliff damage,” he added.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation onFacebook, Twitter, YouTube, and our other social media channels.

 Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:
http://onlinelibrary.wiley.com/doi/10.1002/2014GL062534/abstract?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.
Title
“Coastal cliff ground motions and response to extreme storm waves”

Authors:
Claire S. Earlie: School of Marine Science and Engineering, Plymouth University, Plymouth, UK;

Adam, P. Young: Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA;

Gerd Masselink and Paul E. Russell: School of Marine Science and Engineering, Plymouth University, Plymouth, UK.

Contact information for the authors:
Claire S. Earlie: +44 7590 025745, claire.earlie@plymouth.ac.uk


AGU Contact:
Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

University of Plymouth Contact:
Andrew Merrington
+44 (0)1752 588003
andrew.merrington@plymouth.ac.uk

Nanci Bompey | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Coastal Geophysical Marine Oceanography Plymouth ground motions long-term storms waves

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>