Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How wind sculpted Earth's largest dust deposit

02.09.2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

Wind blew dust from what is now the Mu Us Desert into the huge pile of consolidated dust known as the Loess Plateau, said lead author Paul Kapp, a UA professor of geosciences.


Geoscientist Fulong Cai stands on a linear ridge on top of China's Loess Plateau and looks across a river valley at another of the plateau's linear ridges. The high hills in the far background are on the edge of the plateau, which drops about 1,300 feet (400 meters) to the Mu Us Desert to the northwest.

Credit: Paul Kapp/ University of Arizona Department of Geosciences

Just as a leaf blower clears an area by piling leaves up along the edge, the wind did the same thing with the dust that was once in the Mu Us Desert.

"If the blower keeps blowing the leaves, they move backward and the pile of leaves gets bigger," Kapp said. "There's a boundary between the area of leaves and no leaves."

About the size of the state of Arizona, the Loess Plateau is the largest accumulation of dust on Earth. Deposits of wind-blown dust known as "loess" generally create good agricultural soil and are found in many parts of the world, including the U.S. Midwest.

The UA team also found that, just as a leaf blower moves a pile of leaves away from itself, wind scours the face of the plateau so forcefully that the plateau is slowly moving downwind.

"You have a dust-fall event and then you have a wind event that blows some of the dust away," Kapp said. "The plateau is not static. It's moving in a windward direction."

Linear ridges on the top of the Loess Plateau are also sculpted by the wind, the researchers found.

"The significance of wind erosion shaping the landscape is generally unappreciated," Kapp said. "It's more important than previously thought."

The team's paper, "From dust to dust: Quaternary wind erosion of the Mu Us Desert and the Loess Plateau, China," is scheduled for publication in the September issue of the journal Geology and is currently online.

Kapp's co-authors are UA geoscientists Alex Pullen, Jon Pelletier, Joellen Russell, Paul Goodman and former UA geosciences postdoctoral researcher Fulong Cai, now at the Institute of Tibetan Plateau Research in Beijing. The National Science Foundation funded the research.

To track down the source of the Loess Plateau's dust, Kapp, Pullen and Cai went to China's deserts in 2013 during March--prime season for dust storms. The researchers hoped to experience dust storms first-hand.

While standing atop one of the plateau's linear ridges during a dust storm, the researchers noticed the wind was blowing parallel to the ridge's long axis.

Kapp said they each had the same realization at the same time: The plateau itself was being sculpted by the wind. The plateau is not just a sink for dust, but is also a source of dust.

"You have to live it for it to really sink in," he said. "You have to be out there in the field when the wind is blowing."

Once back at the UA, Kapp fired up Google Earth to see satellite images of the plateau. He saw linear ridges just a few kilometers long--ridges like the ones he'd stood on.

To learn more, he started mapping the ridges in the satellite images.

"I mapped stuff like crazy, for weeks and weeks--I measured the orientation of about three thousand ridges from these images," he said.

The ridges ran northwest-southeast in the northern part of the plateau and ran more north-south in the southern part.

To compare the orientation of the ridges to the orientation of the winds, he asked Russell to make a map of the modern-day wind patterns over the Mu Us desert and the Loess Plateau.

The wind pattern map, especially the winter and spring dust storm winds, matched the orientation of the ridges on top of the plateau.

"I've never seen anyone look at the wind-related geomorphology and actually relate it to climatology at the large scale of the entire Mu Us Desert and Loess Plateau," Kapp said. "It's a rare approach."

The team's ideas definitely are applicable to the formation of other areas of loess deposits on Earth, Kapp said, adding, "But nothing compares to the size of the Loess Plateau."

He continues to be fascinated by how wind shapes planets. Kapp's next step is looking at other wind-eroded landscapes on Earth and also on Mars.

###

Researcher contact:

Paul Kapp
UA Department of Geosciences
520-626-8763
pkapp@email.arizona.edu
http://www.geo.arizona.edu/~pkapp/

Media Contact

Mari N. Jensen
mnjensen@email.arizona.edu
520-626-9635

 @uofascience

http://uanews.org 

Mari N. Jensen | EurekAlert!

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>