Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How wind sculpted Earth's largest dust deposit

02.09.2015

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

Wind blew dust from what is now the Mu Us Desert into the huge pile of consolidated dust known as the Loess Plateau, said lead author Paul Kapp, a UA professor of geosciences.


Geoscientist Fulong Cai stands on a linear ridge on top of China's Loess Plateau and looks across a river valley at another of the plateau's linear ridges. The high hills in the far background are on the edge of the plateau, which drops about 1,300 feet (400 meters) to the Mu Us Desert to the northwest.

Credit: Paul Kapp/ University of Arizona Department of Geosciences

Just as a leaf blower clears an area by piling leaves up along the edge, the wind did the same thing with the dust that was once in the Mu Us Desert.

"If the blower keeps blowing the leaves, they move backward and the pile of leaves gets bigger," Kapp said. "There's a boundary between the area of leaves and no leaves."

About the size of the state of Arizona, the Loess Plateau is the largest accumulation of dust on Earth. Deposits of wind-blown dust known as "loess" generally create good agricultural soil and are found in many parts of the world, including the U.S. Midwest.

The UA team also found that, just as a leaf blower moves a pile of leaves away from itself, wind scours the face of the plateau so forcefully that the plateau is slowly moving downwind.

"You have a dust-fall event and then you have a wind event that blows some of the dust away," Kapp said. "The plateau is not static. It's moving in a windward direction."

Linear ridges on the top of the Loess Plateau are also sculpted by the wind, the researchers found.

"The significance of wind erosion shaping the landscape is generally unappreciated," Kapp said. "It's more important than previously thought."

The team's paper, "From dust to dust: Quaternary wind erosion of the Mu Us Desert and the Loess Plateau, China," is scheduled for publication in the September issue of the journal Geology and is currently online.

Kapp's co-authors are UA geoscientists Alex Pullen, Jon Pelletier, Joellen Russell, Paul Goodman and former UA geosciences postdoctoral researcher Fulong Cai, now at the Institute of Tibetan Plateau Research in Beijing. The National Science Foundation funded the research.

To track down the source of the Loess Plateau's dust, Kapp, Pullen and Cai went to China's deserts in 2013 during March--prime season for dust storms. The researchers hoped to experience dust storms first-hand.

While standing atop one of the plateau's linear ridges during a dust storm, the researchers noticed the wind was blowing parallel to the ridge's long axis.

Kapp said they each had the same realization at the same time: The plateau itself was being sculpted by the wind. The plateau is not just a sink for dust, but is also a source of dust.

"You have to live it for it to really sink in," he said. "You have to be out there in the field when the wind is blowing."

Once back at the UA, Kapp fired up Google Earth to see satellite images of the plateau. He saw linear ridges just a few kilometers long--ridges like the ones he'd stood on.

To learn more, he started mapping the ridges in the satellite images.

"I mapped stuff like crazy, for weeks and weeks--I measured the orientation of about three thousand ridges from these images," he said.

The ridges ran northwest-southeast in the northern part of the plateau and ran more north-south in the southern part.

To compare the orientation of the ridges to the orientation of the winds, he asked Russell to make a map of the modern-day wind patterns over the Mu Us desert and the Loess Plateau.

The wind pattern map, especially the winter and spring dust storm winds, matched the orientation of the ridges on top of the plateau.

"I've never seen anyone look at the wind-related geomorphology and actually relate it to climatology at the large scale of the entire Mu Us Desert and Loess Plateau," Kapp said. "It's a rare approach."

The team's ideas definitely are applicable to the formation of other areas of loess deposits on Earth, Kapp said, adding, "But nothing compares to the size of the Loess Plateau."

He continues to be fascinated by how wind shapes planets. Kapp's next step is looking at other wind-eroded landscapes on Earth and also on Mars.

###

Researcher contact:

Paul Kapp
UA Department of Geosciences
520-626-8763
pkapp@email.arizona.edu
http://www.geo.arizona.edu/~pkapp/

Media Contact

Mari N. Jensen
mnjensen@email.arizona.edu
520-626-9635

 @uofascience

http://uanews.org 

Mari N. Jensen | EurekAlert!

More articles from Earth Sciences:

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

nachricht 'Tiny clocks' crystallize understanding of meteorite crashes
29.05.2017 | University of Western Ontario

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>