Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How started Plate Tectonics on Earth?

12.11.2015

Hot mantle plume rising to the lithosphere induced the first large-scale sinking of lithospheric plates

Our planet Earth is the only planet in the Solar System that possesses Plate Tectonics. The Earth’s surface is in a constant state of change; the tectonic plates together with the oceans and continents continuously slide along one another, collide or sink into the Earth’s mantle.


View from the deep Earth of the broken outer shell of the early Earth (blue) and forming of new lithospheric plates (red) as a result of mantle plume-lithosphere interaction in a 3D numerical model. (graphics: GFZ)

However, it still remains unclear how Plate Tectonics started on Earth. An international research team combining modeling experts from the ETH Zürich, the GFZ German Research Centre for Geosciences, and geologists from the University of Texas and Korea University in Seoul have proposed an answer to this question in a recent publication in the journal Nature.

Based on advanced high-resolution numerical modeling and geological observations they demonstrate that a hot mantle plume rising to the lithosphere from the deep mantle might have broken the intact outer shell of the early Earth and induced the first large-scale sinking of lithospheric plates, a key process of Plate Tectonics called subduction.

The rigid outer shell of present-day Earth that includes crust and uppermost mantle, i.e. the lithosphere is divided into several plates. Lithospheric plates slide along their boundaries or colliding with each other and some of them, which are cold and heavy enough, sink into the deep mantle.

This process, called subduction is the key process of Plate Tectonics responsible for the recycling of the materials of Earth’s crust into the deep mantle and for an efficient cooling of the Earth interior. However, subduction and Plate Tectonics was not always taking place on Earth.

During the first 1 or 2 billion years of the 4.5 billion years Earth’s history, the tectonic process was very different, probably similar to present-day Venus, where the lithosphere is not broken into plates and no subduction occurs. So how did the first subduction and Plate Tectonics develop on Earth?

“Three conditions must have been met for the mantle plume to start first long-lived subduction and Plate Tectonics on Earth”, says Stephan Sobolev, Head of Geodynamic Modeling Section at GFZ and Professor of Geodynamics at University of Potsdam.

“First, the mantle plume had to be large and hot enough to produce a lot of melt. These melts intruded into the lithosphere above the plume making it mechanically weak and allowing the plume to penetrate into the crust. Second, the lithosphere had to be thick and heavy enough to sink into the mantle”.

In the beginning the broken lithosphere around the plume was probably pushed down by the load of the plume material spreading above it and then the sinking parts of the heavy lithosphere pulled down the adjacent lithosphere. “Finally there had to be liquid water in the ocean to lubricate, in a way, the surface of the sinking lithospheric plate” adds Sobolev. “This allowed it to sink deep into the Earth”.

All these conditions were fulfilled sometime in early Earth history, but were never met for other planets of the Solar System. For instance on Venus, which is most similar to the Earth, hot mantle plumes are probably quite common, but the lithosphere is too hot and light and there is no liquid water at the hot surface of Venus.

It was most likely not just an interaction of a single mantle plume with the early Earth lithosphere, but rather a number of such interactions that were responsible for the triggering of Plate Tectonics on Earth. The vigorous inner life of our unique planet created a number of “plate tectonic windows” as shown in the Figure, which joined after some time and induced global Plate Tectonics.

T.V. Gerya , R.J. Stern, M. Baes, S.V. Sobolev and S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation, Nature, 12.11.2015, DOI: 10.1038/nature15752

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>