Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How started Plate Tectonics on Earth?

12.11.2015

Hot mantle plume rising to the lithosphere induced the first large-scale sinking of lithospheric plates

Our planet Earth is the only planet in the Solar System that possesses Plate Tectonics. The Earth’s surface is in a constant state of change; the tectonic plates together with the oceans and continents continuously slide along one another, collide or sink into the Earth’s mantle.


View from the deep Earth of the broken outer shell of the early Earth (blue) and forming of new lithospheric plates (red) as a result of mantle plume-lithosphere interaction in a 3D numerical model. (graphics: GFZ)

However, it still remains unclear how Plate Tectonics started on Earth. An international research team combining modeling experts from the ETH Zürich, the GFZ German Research Centre for Geosciences, and geologists from the University of Texas and Korea University in Seoul have proposed an answer to this question in a recent publication in the journal Nature.

Based on advanced high-resolution numerical modeling and geological observations they demonstrate that a hot mantle plume rising to the lithosphere from the deep mantle might have broken the intact outer shell of the early Earth and induced the first large-scale sinking of lithospheric plates, a key process of Plate Tectonics called subduction.

The rigid outer shell of present-day Earth that includes crust and uppermost mantle, i.e. the lithosphere is divided into several plates. Lithospheric plates slide along their boundaries or colliding with each other and some of them, which are cold and heavy enough, sink into the deep mantle.

This process, called subduction is the key process of Plate Tectonics responsible for the recycling of the materials of Earth’s crust into the deep mantle and for an efficient cooling of the Earth interior. However, subduction and Plate Tectonics was not always taking place on Earth.

During the first 1 or 2 billion years of the 4.5 billion years Earth’s history, the tectonic process was very different, probably similar to present-day Venus, where the lithosphere is not broken into plates and no subduction occurs. So how did the first subduction and Plate Tectonics develop on Earth?

“Three conditions must have been met for the mantle plume to start first long-lived subduction and Plate Tectonics on Earth”, says Stephan Sobolev, Head of Geodynamic Modeling Section at GFZ and Professor of Geodynamics at University of Potsdam.

“First, the mantle plume had to be large and hot enough to produce a lot of melt. These melts intruded into the lithosphere above the plume making it mechanically weak and allowing the plume to penetrate into the crust. Second, the lithosphere had to be thick and heavy enough to sink into the mantle”.

In the beginning the broken lithosphere around the plume was probably pushed down by the load of the plume material spreading above it and then the sinking parts of the heavy lithosphere pulled down the adjacent lithosphere. “Finally there had to be liquid water in the ocean to lubricate, in a way, the surface of the sinking lithospheric plate” adds Sobolev. “This allowed it to sink deep into the Earth”.

All these conditions were fulfilled sometime in early Earth history, but were never met for other planets of the Solar System. For instance on Venus, which is most similar to the Earth, hot mantle plumes are probably quite common, but the lithosphere is too hot and light and there is no liquid water at the hot surface of Venus.

It was most likely not just an interaction of a single mantle plume with the early Earth lithosphere, but rather a number of such interactions that were responsible for the triggering of Plate Tectonics on Earth. The vigorous inner life of our unique planet created a number of “plate tectonic windows” as shown in the Figure, which joined after some time and induced global Plate Tectonics.

T.V. Gerya , R.J. Stern, M. Baes, S.V. Sobolev and S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation, Nature, 12.11.2015, DOI: 10.1038/nature15752

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>