Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How rivers of hot ash and gas move when a supervolcano erupts

07.03.2016

Study suggests that pyroclastic flows traveled in dense, slow-moving currents during one ancient supereruption

Supervolcanoes capable of unleashing hundreds of times the amount of magma that was expelled during the Mount St. Helens eruption of 1980 are found in populated areas around the world, including the western United States.


Photographs scanned from Kodachrome slides show dark rocks embedded in layers of ash. The rocks were picked up and moved across the landscape by pyroclastic flows when the Silver Creek caldera, a supervolcano, erupted 18.8 million years ago.

Credit: Greg A. Valentine

A new study is providing insight into what may happen when one of these colossal entities explodes.

The research focuses on the Silver Creek caldera, which sits at the intersection of California, Nevada and Arizona. When this supervolcano erupted 18.8 million years ago, it flooded parts of all three states with river-like currents of hot ash and gas called pyroclastic flows. These tides of volcanic material traveled for huge distances -- more than 100 miles.

The new study suggests that pyroclastic flows from the ancient eruption took the form of slow, dense currents -- and not fast-moving jets as some experts previously thought.

The research combines recent laboratory experiments with field data from the 1980s -- some of it captured in colorful Kodachrome slides -- to show that the rivers of ash and gas emanating from the Silver Creek caldera likely traveled at modest speeds of about 10 to 45 miles per hour.

"Intuitively, most of us would think that for the pyroclastic flow to go such an extreme distance, it would have to start off with a very high speed," says study co-author Olivier Roche. "But this isn't consistent with what we found."

The research was conducted by Roche at Blaise Pascal University in France, David C. Buesch at the United States Geological Survey and Greg A. Valentine at the University at Buffalo. It will be published on Monday, March 7 in Nature Communications, and all information in this press release is embargoed until 5 a.m. U.S. Eastern Standard Time on that date.

Research on pyroclastic flows is important because it can help inform disaster preparedness efforts, says Valentine, a UB professor of geology and director of the Center for GeoHazards Studies in the UB College of Arts and Sciences.

"We want to understand these pyroclastic flows so we can do a good job of forecasting the behavior of these flows when a volcano erupts," he says. "The character and speed of the flows will affect how much time you might have to get out of the way, although the only truly safe thing to do is to evacuate before a flow starts."

New and vintage data come together to tell the story of a supervolcano

The new study favors one of two competing theories about how pyroclastic flows are able to cover long distances. One school of thought says the flows should resemble turbulent, hot, fast-moving sandstorms, made up mostly of gas, with few particles. The other theory states that the flows should be dense and fluid-like, with pressurized gas between ash particles. The new research supports this latter model, which requires sustained emissions from volcanoes, for many pyroclastic flows.

The findings were based on two sets of data: results from recent experiments that Roche ran to simulate the behavior of pyroclastic flows, and information that Buesch and Valentine gathered at the Silver Creek Caldera eruption site in the 1980s when they were PhD students at the University of California, Santa Barbara, supplemented by some more recent fieldwork.

"I always tell students that they should take good notes while they're working in the field, because you never know when it could be useful," says Valentine, who has a fat binder full of Kodachrome slides showing images he snapped around the Silver Creek caldera.

The data that he and Buesch collected included photographs and notes documenting the size, type and location of rocks that were lifted off the ground and moved short distances by pyroclastic flows during the ancient eruption.

Many of the rocks the pair observed were relatively large -- too large to have been shifted by sandstorm-like pyroclastic flows, which do not pick up heavy objects easily. Denser flows, which can move sizable rocks more readily, likely accounted for the rock patterns Buesch and Valentine observed.

To figure out how fast these dense flows may have been moving when the Silver Creek caldera erupted 18.8 million years ago, the team relied on a model developed by Roche through experiments.

In his tests, Roche studied what happened when a gas and particle mixture resembling a dense pyroclastic flow traveled across a substrate of beads. He found that faster flows were able to lift and move heavier beads, and that there was a relationship between the velocity of a flow and the weight of the bead it was capable of lifting.

Based on Roche's model, the scientists determined that the ancient pyroclastic flows from the supervolcano would have had to travel at speeds of about 5 to 20 meters per second (10 to 45 miles per hour) to pick up rocks as heavy as the ones that Buesch and Valentine saw. It's unlikely that the flows were going much faster than that because larger rocks on the landscape remained undisturbed, Valentine says.

The findings could have widespread applicability when it comes to supereruptions, says Valentine, who notes that patterns of rock deposits around some other supervolcanoes heavily resemble those around the Silver Creek caldera.

Media Contact

Charlotte Hsu
chsu22@buffalo.edu
716-645-4655

 @UBNewsSource

http://www.buffalo.edu 

Charlotte Hsu | EurekAlert!

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>