Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do Landslides control the weathering of rocks?

01.12.2015

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent on the mechanical erosion processes in the river catchments where it occurs.


„Water flowing from the base of a landslide deposit, Gaunt Creek, Western Southern Alps of New Zealand “ (Foto: N. Hovius, GFZ)

Very high erosion rates in active mountain ranges, however, produce such large amounts of eroded rock and sediment that weathering cannot keep pace with erosion. This seemingly straightforward relationship is now put into question by a team of geoscientists from France and Germany.

In the Southern Alps of New Zealand, they found that landslides, despite only affecting a small part of the landscape, accelerate the weathering of the eroded material they create enormously. (current online edition, Nature Geoscience, 30.11.2015)

The researchers examined the relationship between landslides and their weathering impact with geochemical methods; they sampled a range of water sources from the study area, comparing leachate from the base of landslide deposits, streams from small catchments with no landsliding, and large rivers draining hundreds of square kilometres.

The study area in New Zealand is characterized by heavy rainfall and large earthquakes, which both act to generate bedrock landslides. The geoscientists discovered a strong correlation between the dissolved solutes in the sampled waters and the occurrence of landslides.

The ratio of Sodium to Calcium, for example, allowed clear distinction to be drawn between the sources, including distinguishing between water from landslides, deeper groundwater, or from hydrothermal springs.

“Over the whole range of scales, from a single hillslope to an entire mountain belt, the weathering of rocks is reflected in the pattern of the dissolved solutes of the surface water” explains Robert Emberson from the GFZ German Research Centre for Geosciences.

This systematic pattern is directly linked to the areas of landsclides.We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales, “The impact on weathering from landslides that occurred even several decades ago is still clearly observed in the samples we collect today”, says GFZ scientist Emberson.

Although landslides and the mechanical erosion they cause, only affect small parts of the landscape at any given time, they create massive amounts of fresh mineral surfaces: every single piece of rock in the landslide deposit offers a surface where the water that seeps in can stimulate chemical processes.

Since the water does not run off at the surface but percolates slowly through the rock debris, it creates ideal conditions for rapid chemical weathering. Chemical weathering thus is controlled by landslides in active mountain belts.

The possible impact of this effect on the global climate remains to be investigated.
Robert Emberson, Niels Hovius, Albert Galy and Odin Marc: “Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding”, Nature Geoscience, advance online publication, 30.11.2015, Doi: 10.1038/NEO2600

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>