Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cracking explains underwater volcanoes and the Hawaiian bend

28.04.2015

University of Sydney geoscientists have helped prove that some of the ocean's underwater volcanoes did not erupt from hot spots in the Earth's mantle but instead formed from cracks or fractures in the oceanic crust.

The discovery helps explain the spectacular bend in the famous underwater range, the Hawaiian-Emperor seamount chain, where the bottom half kinks at a sixty degree angle to the east of its top half.

"There has been speculation among geoscientists for decades that some underwater volcanoes form because of fracturing," said Professor Dietmar Muller, from the University of Sydney's School of Geosciences in Australia and an author on the research findings published in Nature Geoscience today.

"But this is the first comprehensive analysis of the rocks that form in this setting that confirms their origins."

It has long been accepted that as the Earth's plates move over fixed hot spots in its underlying mantle, resulting eruptions create chains of now extinct underwater volcanoes or 'seamounts'.

One of the most famous is the Hawaiian-Emperor chain in the northern Pacific Ocean. The seamounts of that chain are composed mainly of ocean island basalts - the type of lava that erupts above hot spots.

But north of the Hawaiian chain, in a formation called the Musicians Ridge, researchers found samples from seamounts that were not made up of the ocean island basalts you would expect from plates moving over a hot spot.

"The oldest part of the Musicians Ridge formed approximately 90 million years ago from hot spots but these new samples are only about 50 million years old and have a different geochemistry," said Professor Muller.

"They did not form because of a hot spot but because of plates cracking open at their weakest point, allowing new magma to rise to the seabed and restart the formation of underwater volcanoes. They are near extinct hot spot volcanoes because that hot spot action millions of years earlier helped weaken the crust (the layer directly above the mantle) where new volcanoes now form."

Vulnerable spots in the Earth's plates crack when they are stressed, in this case due to movement of the Pacific Plate which started to dive or submerge back into the Earth's crust at its northern and western edges around 50 million years ago.

The formation of these younger seamounts caused by the deformation of the Pacific Plate at its margins suggests a link to the unique bend in the Hawaiian-Emperor chain.

"We believe tectonic changes along the margins of the Pacific Plate around 50 million years ago put the weakest points of the Pacific Ocean crust under tension and created the youngest Musicians Ridge seamounts," said Professor Muller.

"It also caused the flow in the slowly convecting mantle under the Pacific to change dramatically, to the point that the Hawaiian hot spot in the Earth's mantle changed its position.

"The resulting seamounts along the Hawaii-Emperor chain changed their position accordingly and the bend was born."

This work provides a solid foundation for understanding other 'non-hot spot' volcanism seen elsewhere, for example the Puka Puka Ridge in the South Pacific.

The lead author on the paper is Professor John O'Connor from the Alfred Wegener Institute for Polar and Marine Research in Germany.

Media Contact

Verity Leatherdale
verity.leatherdale@sydney.edu.au
61-403-067-342

 @SydneyUni_Media

http://www.usyd.edu.au/ 

Verity Leatherdale | EurekAlert!

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>