Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cracking explains underwater volcanoes and the Hawaiian bend

28.04.2015

University of Sydney geoscientists have helped prove that some of the ocean's underwater volcanoes did not erupt from hot spots in the Earth's mantle but instead formed from cracks or fractures in the oceanic crust.

The discovery helps explain the spectacular bend in the famous underwater range, the Hawaiian-Emperor seamount chain, where the bottom half kinks at a sixty degree angle to the east of its top half.

"There has been speculation among geoscientists for decades that some underwater volcanoes form because of fracturing," said Professor Dietmar Muller, from the University of Sydney's School of Geosciences in Australia and an author on the research findings published in Nature Geoscience today.

"But this is the first comprehensive analysis of the rocks that form in this setting that confirms their origins."

It has long been accepted that as the Earth's plates move over fixed hot spots in its underlying mantle, resulting eruptions create chains of now extinct underwater volcanoes or 'seamounts'.

One of the most famous is the Hawaiian-Emperor chain in the northern Pacific Ocean. The seamounts of that chain are composed mainly of ocean island basalts - the type of lava that erupts above hot spots.

But north of the Hawaiian chain, in a formation called the Musicians Ridge, researchers found samples from seamounts that were not made up of the ocean island basalts you would expect from plates moving over a hot spot.

"The oldest part of the Musicians Ridge formed approximately 90 million years ago from hot spots but these new samples are only about 50 million years old and have a different geochemistry," said Professor Muller.

"They did not form because of a hot spot but because of plates cracking open at their weakest point, allowing new magma to rise to the seabed and restart the formation of underwater volcanoes. They are near extinct hot spot volcanoes because that hot spot action millions of years earlier helped weaken the crust (the layer directly above the mantle) where new volcanoes now form."

Vulnerable spots in the Earth's plates crack when they are stressed, in this case due to movement of the Pacific Plate which started to dive or submerge back into the Earth's crust at its northern and western edges around 50 million years ago.

The formation of these younger seamounts caused by the deformation of the Pacific Plate at its margins suggests a link to the unique bend in the Hawaiian-Emperor chain.

"We believe tectonic changes along the margins of the Pacific Plate around 50 million years ago put the weakest points of the Pacific Ocean crust under tension and created the youngest Musicians Ridge seamounts," said Professor Muller.

"It also caused the flow in the slowly convecting mantle under the Pacific to change dramatically, to the point that the Hawaiian hot spot in the Earth's mantle changed its position.

"The resulting seamounts along the Hawaii-Emperor chain changed their position accordingly and the bend was born."

This work provides a solid foundation for understanding other 'non-hot spot' volcanism seen elsewhere, for example the Puka Puka Ridge in the South Pacific.

The lead author on the paper is Professor John O'Connor from the Alfred Wegener Institute for Polar and Marine Research in Germany.

Media Contact

Verity Leatherdale
verity.leatherdale@sydney.edu.au
61-403-067-342

 @SydneyUni_Media

http://www.usyd.edu.au/ 

Verity Leatherdale | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>