Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How carbonates behave in the Earth's interior

16.02.2015

A new DFG Research Unit looks at the behaviour of the mineral under high pressures and temperatures.

Carbonates are the most important carbon reservoirs on the planet. But what role do they play in the Earth's interior? How do they react to conditions in the Earth's mantle? These are the questions being asked by a group of scientific researchers from Frankfurt, Bayreuth, Berlin/Potsdam, Freiberg and Hamburg, in a project funded by the DFG. The Research Unit brings together experts from various geoscience disciplines and cutting edge technology.

The Earth has an average radius of around 6,400 kilometers. However, the deepest borehole thus far drilled has only reached a depth of twelve kilometers. And even with huge technical advances, it is unthinkable that we will ever be able to carry out empirical research on the deepest layers, according to Björn Winkler, Professor of Crystallography at the Goethe University Frankfurt and coordinator of the new Research Unit.

"We can only get an idea of the conditions in the Earth's interior by combining experiments and model calculations", he explains. While we already have detailed knowledge of silicates, which are a key component of the earth's mantle, very little research on carbonates has been done to date. "The composition of the earth can be explained without carbonates - but the question is, how well?", continues Winkler.

"Structures, Properties and Reactions of Carbonates at High Temperatures and Pressures" is the title of the project being funded by the DFG as of mid-February. "We want to understand how the Earth works", is the way Winkler describes the primary research goal of the approximately 30 scientists and their teams. What possibilities our planet has for storing carbon, how much carbon there actually is on the earth – the entire carbon cycle is still a complete mystery.

The research group, which combines seven individual projects, is focusing its attention on the Earth's mantle: the 2,850 kilometer thick middle layer in the internal structure of the earth. The aim is to come to a better understanding of the phase relationships, crystal chemistry and physical properties of carbonates.

To that end, the plan is to simulate the conditions of the mantle transition zone and the lower earth mantle below it – namely very high temperatures and very high pressure. Each of the seven projects examines a different aspect; for example the carbonate calcite, or the combination of carbonates with iron or silicates, or the behavior of carbonates under shock.

Winkler and his team have been dealing with this issue for six years already. His colleague, Dr. Lkhamsuren Bayarjargal has already been awarded the Max-von-Laue Prize from the German Association of Crystallography for his work with high-power lasers, and has received funding from the Focus Program of the Goethe University. The nationwide collaboration among the researchers is not an entirely new phenomenon either.

The DFG funding will enable them to build special equipment to simulate the conditions in the Earth's mantle. This research apparatus includes diamond anvil cells, capable of producing pressures a million times greater than atmospheric pressure, and high-power lasers that can generate temperatures of up to 5,000 degrees Celsius. Calculations have shown that these are the conditions that prevail in the Earth's mantle.

The tiniest amounts of a carbonate are enough for an experiment. During the experiment, the substance is exposed to the respective conditions while the researchers examine it for any changes. A variety of techniques are used for this, such as Raman spectroscopy in Frankfurt, and infrared spectroscopy in Potsdam. "If we come to the same conclusions using different methods, we will know that we have got it right", says Prof. Winkler.


Information: Prof. Dr. Björn Winkler, Faculty of Mineralogy, Institute for Geosciences, Riedberg Campus, Phone: (069) 798-40107, b.winkler@ kristall.uni-frankfurt.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher The President of Goethe University, Marketing and Communications Department, 60629 Frankfurt am Main
Editor: Dr. Anke Sauter, Officer for Scientific Communication, International Communication, Tel: (069) 798-12498, Fax (069) 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | Goethe-Universität Frankfurt am Main

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>