Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic shrinking of Antarctic Ice Sheet linked to CO2 spike

12.10.2016

First evidence found in ancient, fossilized leaves

Twenty-three million years ago, the Antarctic Ice Sheet began to shrink, going from an expanse larger than today's to one about half its modern size. Computer models suggested a spike in carbon dioxide levels as the cause, but the evidence was elusive - until now.


Fossilized leaves hold evidence of a sharp increase in carbon dioxide levels as the Antarctic ice sheet began to shrink 23 million years ago, a new study finds. This magnified image of a fossilized Litsea calicarioides leaf clearly shows the stomata, through which leaves take in CO2 and release oxygen.

Credit: Tammo Reichgelt/Lamont-Doherty Earth Observatory

Ancient fossilized leaves retrieved from a lake bed in New Zealand now show for the first time that carbon dioxide levels increased dramatically over a relatively short period of time as the ice sheet began to deteriorate.

The findings, appearing in the journal Earth and Planetary Science Letters, raise new questions about the stability of the Antarctic Ice Sheet today as atmospheric CO2 concentrations rise to levels never before experienced by humans.

"We see here that when the Antarctic ice sheet starts deteriorating, it is not that easy to get it back," said study lead author Tammo Reichgelt, a postdoctoral research scientist at Columbia University's Lamont-Doherty Earth Observatory. "Some models have shown that, at the rate we're going right now, the Antarctic Ice Sheet might reach a critical tipping point and start reducing the extent of ice very quickly. We see here that that has happened in the past."

The scientists examined a 100,000-year period at the transition between the Oligocene and Miocene epochs. The Antarctic Ice Sheet was about 125 percent larger at the start of that period than it is today. By the end, it was about 50 percent smaller than today.

Just before the ice sheet began its decline, atmospheric CO2 levels began to spike, rising from about 500 parts per million (ppm) to between 750 and 1550 ppm over a span of just 20,000 years, the study found. The CO2 level returned to around 425 ppm after that, but positive feedback loops continued to drive melting, the scientists said.

"This is the first time we have found evidence that CO2 fluctuations of this magnitude can happen on relatively short time scales," Reichgelt said. To compare the CO2 increase to modern times, atmospheric CO2 recently passed 400 ppm and is rising.

What caused the CO2 spike 23 million years ago is still unknown, Reichgelt said. Glacial periods have coincided with cyclical changes in Earth's orbit, and one theory suggests that organic material that had built up in the Southern Ocean may have started oxygenating quickly and released large amounts of CO2.

To dig into the past, the scientists analyzed sediment cores from the bottom of an ancient lake on New Zealand's South Island where conditions at that time were ideal for preserving evidence of climates past. Foulden Maar was a humid, subtropical area surrounded by a diverse rainforest back then, and the lake was deep, creating low-oxygen conditions at the bottom that helped preserve forest leaves that fell in and sank.

In those now-fossilized leaves, the scientists can clearly see the size, shape and number of the leaves' stomata, the opening through which leaves "breathe" CO2 in and release oxygen. The carbon isotope composition of the leaves together with the stomatal data provided the atmospheric CO2 estimates for the period 23 million years ago.

"The leaves living in the forest surrounding the lake were responding to a change in CO2 by reducing the number of stomata as CO2 increased," said co-author William D'Andrea, a Lamont associate research professor and climate scientist.

Other recent studies have found that Antarctica may be more sensitive to changes in CO2 and lower levels of CO2 than previously thought. One international group of scientists working with a sediment core from the Ross Sea off Antarctica and ice sheet modeling found that Antarctica was highly sensitive to changes in CO2 during the early and mid-Miocene, and that the ice had retreated far inland during times when atmospheric CO2 passed 500 ppm.

D'Andrea noted that even the lowest end of the CO2 estimates in the new study, around 750 ppm, appears to have been high enough to destabilize the Antarctic Ice Sheet.

"Prior to this study, it was unclear if atmospheric carbon dioxide increased during the termination of the Miocene Mi-1 glaciation, a factor critical to ending glaciations," said Aaron Diefendorf, a paleoclimatologist at the University of Cincinnati who was not involved in the new study. "This new study will provide Earth scientists new information to study this glaciation and provide a new framework to approach other glaciations and events in Earth's past."

###

The other co-author of the new study is Bethany Fox of the University of Waikato, New Zealand.

The paper, "Abrupt plant physiological changes in southern New Zealand at the termination of the Mi-1 event reflect shifts in hydroclimate and pCO2" is available online or from the authors. http://www.sciencedirect.com/science/article/pii/S0012821X16305064

Author contacts:

Tammo Reichgelt tammor@ldeo.columbia.edu

William D'Andrea dandrea@ldeo.columbia.edu

More information: Kevin Krajick, Senior editor, science news, The Earth Institute/Lamont-Doherty Earth Observatory kkrajick@ei.columbia.edu 212-854-9729

Lamont-Doherty Earth Observatory is Columbia University's home for Earth science research. Its scientists develop fundamental knowledge about the origin, evolution and future of the natural world, from the planet's deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. http://www.ldeo.columbia.edu | @LamontEarth

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. http://www.earth.columbia.edu.

Kevin Krajick | EurekAlert!

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>