Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017

Flow of the Greenland Ice Sheet is likely to speed up in the future, despite a recent slowdown, because its outlet glaciers slide over wet sediment, not hard rock, new research based on seismic surveys has confirmed. This sediment will become weaker and more slippery as global temperatures rise and meltwater supply becomes more variable.

The findings challenge the view that the recent slowdowns in ice flow would continue in the long term.


The researchers carried out seismic surveys at a surface lake like this.

Credit: C F Dow

The research, published in Science Advances, was led by Professor Bernd Kulessa, a glaciologist at Swansea University, and involved experts from the UK, Canada, Sweden and Norway.

Previous research has identified two possible mechanisms for controlling the speed of the ice flow. The first is self-regulation, which proposes that glaciers slow down at the end of the summer because large networks of channels drain water away at the base, increasing frictional resistance to ice flow.

... more about:
»GLACIERS »Greenland ice »ice sheet »meltwater

The second is to do with the soft sediments that recent research has shown underlie glaciers; in this model, changing patterns of water flow alternately weaken or strengthen the sediment, making it more or less slippery, and thus enhancing or decreasing the speed of ice flow.

The team's aim was to test the sediment theory for the first time using measurements on the ice sheet.

They carried out seismic surveys at a surface lake on the Greenland Ice Sheet, where the ice is around 1.2 km thick. This involves using a series of controlled explosions to send acoustic waves through the glacier, which then bounce back to a series of geophones -small microphones - set up on the glacier. The data are then analysed to delineate and characterise the physical properties of the sediment underneath the ice.

Their seismic observations confirmed that:

  • sediment played the key role in controlling ice sheet flow;
  • variability in meltwater supply controls sediment's slipperiness;
  • weakening of subglacial sediment leads to accelerated ice flow.

They conclude that:

  • The future response of the ice sheet to climate warming will be more complex than a simple case of the flow slowing down due to self-regulation
  • Understanding how widespread sediments are and how their properties change with meltwater supply is essential if we are to build up an accurate picture of future patterns of ice flow

     

Professor Bernd Kulessa of the College of Science at Swansea University, lead researcher on the project, said:

"Greenland's margin has many outlet glaciers that act as fast conveyor belts of ice. Thousands of surface lakes act as taps that deliver meltwater to the ice base, turning it into a slippery bathtub.

Because it is difficult to see beneath them we surmised until recently that the glaciers slip over hard rock, but we realise now that they often slip over sloppy wet sediments instead.

In a warming Arctic climate more ice will melt and make the sediments even sloppier and more slippery, so that fast ice flow can occur long into the future.

This discovery leaves us concerned because we have so far accepted the exact opposite - that Greenland's icy conveyor would slow down."

###

Notes to editors:

The research paper is called "Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow". It is published in Science Advances, and is available here after the embargo lifts.

The team included researchers from Swansea, Aberystwyth, Leeds and Cambridge universities in the UK, and from the Arctic University of Norway, the Norwegian Polar Institute, University of Waterloo (Canada) and Uppsala Universitet (Sweden).

Swansea University is a world-class, research-led, dual campus university. The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.

The University's 46-acre Singleton Park Campus is located in beautiful parkland with views across Swansea Bay. The University's 65-acre science and innovation Bay Campus, which opened in September 2015, is located a few miles away on the eastern approach to the city. It has the distinction of having direct access to a beach and its own seafront promenade. Both campuses are close to the Gower Peninsula, the UK's first Area of Outstanding Natural Beauty.

Swansea is ranked the top university in Wales and is currently The Times and The Sunday Times 'Welsh University of the Year'. It is also ranked within the top 350 best universities in the world in the Times Higher Education World University rankings. The results of the Research Excellence Framework (REF) 2014 showed the University has achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK, with the 'biggest leap among research-intensive institutions' (Times Higher Education, December 2014) in the UK. The University has ambitious expansion plans as it moves towards its centenary in 2020, as it continues to extend its global reach and realising its domestic and international ambitions. Swansea University is a registered charity. No.1138342. Visit http://www.swansea.ac.uk

Contact details:

Kevin Sullivan, Public Relations Officer, Swansea University press office. k.g.sullivan@swansea.ac.uk Tel 44 (0)1792 513 245; 07768 670 581

Follow us on Twitter: http://www.twitter.com/SwanseaUni Find us on Facebook: http://www.facebook.com/swanseauniversity

Kevin Sullivan | EurekAlert!

Further reports about: GLACIERS Greenland ice ice sheet meltwater

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>