Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse Gases Linked to Past African Rainfall

08.12.2014

New research demonstrates for the first time that an increase in greenhouse gas concentrations thousands of years ago was a key factor in causing substantially more rainfall in two major regions of Africa. The finding provides new evidence that the current increase in greenhouse gases will have an important impact on Africa’s future climate.

The study, led by the National Center for Atmospheric Research (NCAR), is being published this week in Science.


Wikimedia Commons photo by Sfivat.

Lakes and other water features, such as the Ubari Oasis in southern Libya, were more prevalent across now-dry parts of Africa during times when precipitation was more plentiful.

“The future impact of greenhouse gases on rainfall in Africa is a critical socioeconomic issue,” said NCAR scientist Bette Otto-Bliesner, the lead author. “Africa’s climate seems destined to change, with far-reaching implications for water resources and agriculture.”

The research drew on advanced computer simulations and analyses of sediments and other records of past climate. It was funded by the National Science Foundation, which is NCAR’s sponsor, and the Department of Energy Office of Science.

A mysterious period of rain

Otto-Bliesner and her co-authors in the United States and China set out to understand the reasons behind dramatic climate shifts that took place in Africa thousands of years ago.

As the ice sheets that had covered large parts of North America and northern Europe started retreating from their maximum extent around 21,000 years ago, Africa’s climate responded in a way that has puzzled scientists. Following a long dry spell during the glacial maximum, the amount of rainfall in Africa abruptly increased, starting around 14,700 years ago and continuing until around 5,000 years ago. So intense was the cumulative rainfall, turning desert into grasslands and savannas, that scientists named the span the African Humid Period (AHP).

The puzzling part was why the same precipitation phenomenon occurred simultaneously in two well-separated regions, one north of the equator and one to the south. Previous studies had suggested that, in northern Africa, the AHP was triggered by a ~20,000-year cyclic wobble in Earth’s orbit that resulted in increased summertime heating north of the equator. (In contrast, the northern hemisphere today is closest to the Sun in winter rather than summer.) That summertime heating would have warmed the land in such a way as to strengthen the monsoon winds from the ocean and enhance rainfall.

But Otto-Bliesner said the orbital pattern alone would not explain the simultaneous onset of the AHP in southeastern equatorial Africa, south of the equator, since the wobble in Earth's orbit led to less summertime heating there rather than more. Instead, the study revealed the role of two other factors: a change in Atlantic Ocean circulation that rapidly boosted rainfall in the region, and a rise in greenhouse gas concentrations that helped enhance rainfall across a wide swath of Africa.

Tracing multiple causes of a wetter Africa

As Earth emerged from the last Ice Age, greenhouse gases, especially carbon dioxide and methane, increased significantly—reaching almost to pre-industrial levels by 11,000 years ago—for reasons that are not yet fully understood. It was, the authors note, the most recent time during which natural global warming was associated with increases in greenhouse gas concentrations. (Because of feedbacks between the two, greenhouse gas concentrations and global temperature often rise and fall together across climate history.)

The end of the last Ice Age also triggered an influx of fresh water into the ocean from melting ice sheets in North America and Scandinavia about 17,000 years ago. The fresh water interfered with a critical circulation pattern that transports heat and salinity northward through the Atlantic Ocean, much like a conveyer belt. The weakened circulation led to African precipitation shifting toward southernmost Africa, with rainfall suppressed in northern, equatorial, and east Africa.

When the ice sheets stopped melting, the circulation became stronger again, bringing precipitation back into southeastern equatorial and northern Africa. This change, coupled with the orbital shift and the warming by the increasing greenhouse gases, is what triggered the AHP.

To piece together the puzzle, the researchers drew on fossil pollen, evidence of former lake levels, and other proxy records indicating past moisture conditions. They focused their work on northern Africa (the present day Sahel region encompassing Niger, Chad, and also northern Nigeria) and southeastern equatorial Africa (the largely forested area of today’s eastern Democratic Republic of Congo, Rwanda, Burundi, and much of Tanzania and Kenya).

In addition to the proxy records, they simulated past climate with the NCAR-based Community Climate System Model, a powerful global climate model developed by a broad community of researchers and funded by the National Science Foundation and Department of Energy, and using supercomputers at the Oak Ridge National Laboratory.

By comparing the proxy records with the computer simulations, the study demonstrated that the climate model got the AHP right. This helps to validate its role in predicting how rising greenhouse gas concentrations might change rainfall patterns in a highly populated and vulnerable part of the world.

“Normally climate simulations cover perhaps a century or take a snapshot of past conditions,” Otto-Bliesner said. “A study like this one, dissecting why the climate evolved as it did over this intriguing 10,000-year period, was more than I thought I would ever see in my career.”

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

About the paper

Title: Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation

Authors: Bette L. Otto-Bliesner, James M. Russell, Peter U. Clark, Zhengyu Liu, Jonathan T. Overpeck, Bronwen Konecky, Peter deMenocal, Sharon E. Nicholson, Feng He, Zhengyao Lu

Journal: Science

On the Web

For news releases, images, and more:
www.ucar.edu/atmosnews

Contact Information
David Hosansky, NCAR/UCAR Media Relations
303-497-8611
hosansky@ucar.edu

Bob Henson, NCAR/UCAR Media Relations
303-497-8605
bhenson@ucar.edu

David Hosansky | newswise
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>