Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenhouse Gases Linked to Past African Rainfall


New research demonstrates for the first time that an increase in greenhouse gas concentrations thousands of years ago was a key factor in causing substantially more rainfall in two major regions of Africa. The finding provides new evidence that the current increase in greenhouse gases will have an important impact on Africa’s future climate.

The study, led by the National Center for Atmospheric Research (NCAR), is being published this week in Science.

Wikimedia Commons photo by Sfivat.

Lakes and other water features, such as the Ubari Oasis in southern Libya, were more prevalent across now-dry parts of Africa during times when precipitation was more plentiful.

“The future impact of greenhouse gases on rainfall in Africa is a critical socioeconomic issue,” said NCAR scientist Bette Otto-Bliesner, the lead author. “Africa’s climate seems destined to change, with far-reaching implications for water resources and agriculture.”

The research drew on advanced computer simulations and analyses of sediments and other records of past climate. It was funded by the National Science Foundation, which is NCAR’s sponsor, and the Department of Energy Office of Science.

A mysterious period of rain

Otto-Bliesner and her co-authors in the United States and China set out to understand the reasons behind dramatic climate shifts that took place in Africa thousands of years ago.

As the ice sheets that had covered large parts of North America and northern Europe started retreating from their maximum extent around 21,000 years ago, Africa’s climate responded in a way that has puzzled scientists. Following a long dry spell during the glacial maximum, the amount of rainfall in Africa abruptly increased, starting around 14,700 years ago and continuing until around 5,000 years ago. So intense was the cumulative rainfall, turning desert into grasslands and savannas, that scientists named the span the African Humid Period (AHP).

The puzzling part was why the same precipitation phenomenon occurred simultaneously in two well-separated regions, one north of the equator and one to the south. Previous studies had suggested that, in northern Africa, the AHP was triggered by a ~20,000-year cyclic wobble in Earth’s orbit that resulted in increased summertime heating north of the equator. (In contrast, the northern hemisphere today is closest to the Sun in winter rather than summer.) That summertime heating would have warmed the land in such a way as to strengthen the monsoon winds from the ocean and enhance rainfall.

But Otto-Bliesner said the orbital pattern alone would not explain the simultaneous onset of the AHP in southeastern equatorial Africa, south of the equator, since the wobble in Earth's orbit led to less summertime heating there rather than more. Instead, the study revealed the role of two other factors: a change in Atlantic Ocean circulation that rapidly boosted rainfall in the region, and a rise in greenhouse gas concentrations that helped enhance rainfall across a wide swath of Africa.

Tracing multiple causes of a wetter Africa

As Earth emerged from the last Ice Age, greenhouse gases, especially carbon dioxide and methane, increased significantly—reaching almost to pre-industrial levels by 11,000 years ago—for reasons that are not yet fully understood. It was, the authors note, the most recent time during which natural global warming was associated with increases in greenhouse gas concentrations. (Because of feedbacks between the two, greenhouse gas concentrations and global temperature often rise and fall together across climate history.)

The end of the last Ice Age also triggered an influx of fresh water into the ocean from melting ice sheets in North America and Scandinavia about 17,000 years ago. The fresh water interfered with a critical circulation pattern that transports heat and salinity northward through the Atlantic Ocean, much like a conveyer belt. The weakened circulation led to African precipitation shifting toward southernmost Africa, with rainfall suppressed in northern, equatorial, and east Africa.

When the ice sheets stopped melting, the circulation became stronger again, bringing precipitation back into southeastern equatorial and northern Africa. This change, coupled with the orbital shift and the warming by the increasing greenhouse gases, is what triggered the AHP.

To piece together the puzzle, the researchers drew on fossil pollen, evidence of former lake levels, and other proxy records indicating past moisture conditions. They focused their work on northern Africa (the present day Sahel region encompassing Niger, Chad, and also northern Nigeria) and southeastern equatorial Africa (the largely forested area of today’s eastern Democratic Republic of Congo, Rwanda, Burundi, and much of Tanzania and Kenya).

In addition to the proxy records, they simulated past climate with the NCAR-based Community Climate System Model, a powerful global climate model developed by a broad community of researchers and funded by the National Science Foundation and Department of Energy, and using supercomputers at the Oak Ridge National Laboratory.

By comparing the proxy records with the computer simulations, the study demonstrated that the climate model got the AHP right. This helps to validate its role in predicting how rising greenhouse gas concentrations might change rainfall patterns in a highly populated and vulnerable part of the world.

“Normally climate simulations cover perhaps a century or take a snapshot of past conditions,” Otto-Bliesner said. “A study like this one, dissecting why the climate evolved as it did over this intriguing 10,000-year period, was more than I thought I would ever see in my career.”

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

About the paper

Title: Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation

Authors: Bette L. Otto-Bliesner, James M. Russell, Peter U. Clark, Zhengyu Liu, Jonathan T. Overpeck, Bronwen Konecky, Peter deMenocal, Sharon E. Nicholson, Feng He, Zhengyao Lu

Journal: Science

On the Web

For news releases, images, and more:

Contact Information
David Hosansky, NCAR/UCAR Media Relations

Bob Henson, NCAR/UCAR Media Relations

David Hosansky | newswise
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>