Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming brings more snow to Antarctica

17.03.2015

Although it sounds paradoxical, rising temperatures might result in more snowfall in Antarctica. Each degree Celsius of regional warming could increase snowfall on the ice continent by about 5 percent, an international team of scientists led by the Potsdam Institute for Climate Impact Research now quantified.

Published in the journal Nature Climate Change, their work builds on high-quality ice-core data and fundamental laws of physics captured in global and regional climate model simulations. The results provide a missing link for future projections of Antarctica’s critical contribution to sea-level rise. However, the increase in snowfall will not save Antarctica from losing ice.

“Warmer air transports more moisture and hence produces more precipitation – in cold Antarctica this takes the form of snowfall,” lead author Katja Frieler explains. “We have now pulled a number of various lines of evidence together and find a very consistent result: Temperature increase means more snowfall on Antarctica,” says Frieler. “For every degree of regional warming, snowfall increases by about 5 percent.”

To narrow down future snowfall on Antarctica to a robust estimate, the scientists from Potsdam collaborated with colleagues in the USA and the Netherlands. “Ice-cores drilled in different parts of Antarctica provide data that can help us understand the future,” says Peter U. Clark from the Oregon State University, USA. “Information about the snowfall spanning the large temperature change during the last deglaciation 21,000 to 10,000 years ago tells us what we can expect during the next century.”

The researchers combined the ice-core data with simulations of the Earth’s climate history and comprehensive future projections by different climate models, and were able to pin down temperature and accumulation changes in warming Antarctica.

**Double paradox: Warming brings more snowfall, more snowfall enhances ice loss**

“Under global warming, the Antarctic ice sheet with its huge volume could become a major contributor to future sea-level rise, thus potentially affecting millions of people living in coastal areas,” Frieler says. Hence the interest of quantifying snowfall which would make the ice sheet grow in height and gain mass. Unfortunately, building on a previous PIK study, the scientists found that additional snowfall will also increase the ice flow to the ocean, partly countering the gain.

“Snow piling up on the ice is heavy and presses down – the higher the ice, the more pressure. Because additional snowfall elevates the grounded ice-sheet on the Antarctic continent but less so the floating ice shelves at its shore, the ice flows more rapidly into the ocean and contributes to sea level,” co-author Ricarda Winkelmann explains. Accounting for this effect a 5-percent increase in snowfall on Antarctica would mean a calculative drop in sea-level of about 3 cm after 100 years. Other processes, however, will effect a rise in sea-level in the end. For instance, already rather little warming of the ocean could cause ice at the Antarctic shore to break off more easily, hence more ice mass from the continent would flow out and discharge into the ocean.

**Antarctica is a key factor to future sea level rise**

"So, if we look at the big picture these new findings don’t change the fact that Antarctica will lose more ice than it will gain, and that it will contribute to future sea-level change,” says co-author Anders Levermann, who is also one of the lead authors of the sea-level rise chapter in the latest report of the IPCC. “For decision makers in coastal areas it is vital to know how much sea-level rise can still be avoided by limiting global warming, and how quickly we will have to adapt to the unavoidable – the role of Antarctica is key to those considerations. Our findings provide another piece in the puzzle that we need to quantify future sea-level rise.”

Article: Frieler, K., Clark, P.U., He, F., Buizert, C., Reese, R., Ligtenberg, S.R.M., van den Broeke, M.R., Winkelmann, R., Levermann, A. (2015): Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change [doi: 10.1038/nclimate2574]

Weblink to the article once it is published: http://dx.doi.org/10.1038/nclimate2574

Weblink to a previous study on more ice loss through snowfall on Antarctica: Winkelmann, R., Levermann, A., Martin, M.A., Frieler, K. (2012): Increased future ice discharge from Antarctica owing to higher snowfall. Nature [doi:10.1038/nature11616]
https://www.pik-potsdam.de/news/press-releases/archive/2012/more-ice-loss-throug...

Weblink to a previous study on Antarctica's contribution to sea-level change: Levermann, A., Winkelmann, R., Nowicki, S, Fastook, J.L., Frieler, K., Greve, R., Hellmer, H.H., Martin, M.A., Meinshausen, M., Mengel, M., Payne, A.J., Pollard, D., Sato, T., Timmermann, R., Wang, W.L., Bindschadler, R.A. (2014): Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth System Dynamics, 5, 271-293 [DOI: 10.5194/esd-5-271-2014]
https://www.pik-potsdam.de/aktuelles/pressemitteilungen/antarktis-koennte-meeres...

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>