Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming brings more snow to Antarctica

17.03.2015

Although it sounds paradoxical, rising temperatures might result in more snowfall in Antarctica. Each degree Celsius of regional warming could increase snowfall on the ice continent by about 5 percent, an international team of scientists led by the Potsdam Institute for Climate Impact Research now quantified.

Published in the journal Nature Climate Change, their work builds on high-quality ice-core data and fundamental laws of physics captured in global and regional climate model simulations. The results provide a missing link for future projections of Antarctica’s critical contribution to sea-level rise. However, the increase in snowfall will not save Antarctica from losing ice.

“Warmer air transports more moisture and hence produces more precipitation – in cold Antarctica this takes the form of snowfall,” lead author Katja Frieler explains. “We have now pulled a number of various lines of evidence together and find a very consistent result: Temperature increase means more snowfall on Antarctica,” says Frieler. “For every degree of regional warming, snowfall increases by about 5 percent.”

To narrow down future snowfall on Antarctica to a robust estimate, the scientists from Potsdam collaborated with colleagues in the USA and the Netherlands. “Ice-cores drilled in different parts of Antarctica provide data that can help us understand the future,” says Peter U. Clark from the Oregon State University, USA. “Information about the snowfall spanning the large temperature change during the last deglaciation 21,000 to 10,000 years ago tells us what we can expect during the next century.”

The researchers combined the ice-core data with simulations of the Earth’s climate history and comprehensive future projections by different climate models, and were able to pin down temperature and accumulation changes in warming Antarctica.

**Double paradox: Warming brings more snowfall, more snowfall enhances ice loss**

“Under global warming, the Antarctic ice sheet with its huge volume could become a major contributor to future sea-level rise, thus potentially affecting millions of people living in coastal areas,” Frieler says. Hence the interest of quantifying snowfall which would make the ice sheet grow in height and gain mass. Unfortunately, building on a previous PIK study, the scientists found that additional snowfall will also increase the ice flow to the ocean, partly countering the gain.

“Snow piling up on the ice is heavy and presses down – the higher the ice, the more pressure. Because additional snowfall elevates the grounded ice-sheet on the Antarctic continent but less so the floating ice shelves at its shore, the ice flows more rapidly into the ocean and contributes to sea level,” co-author Ricarda Winkelmann explains. Accounting for this effect a 5-percent increase in snowfall on Antarctica would mean a calculative drop in sea-level of about 3 cm after 100 years. Other processes, however, will effect a rise in sea-level in the end. For instance, already rather little warming of the ocean could cause ice at the Antarctic shore to break off more easily, hence more ice mass from the continent would flow out and discharge into the ocean.

**Antarctica is a key factor to future sea level rise**

"So, if we look at the big picture these new findings don’t change the fact that Antarctica will lose more ice than it will gain, and that it will contribute to future sea-level change,” says co-author Anders Levermann, who is also one of the lead authors of the sea-level rise chapter in the latest report of the IPCC. “For decision makers in coastal areas it is vital to know how much sea-level rise can still be avoided by limiting global warming, and how quickly we will have to adapt to the unavoidable – the role of Antarctica is key to those considerations. Our findings provide another piece in the puzzle that we need to quantify future sea-level rise.”

Article: Frieler, K., Clark, P.U., He, F., Buizert, C., Reese, R., Ligtenberg, S.R.M., van den Broeke, M.R., Winkelmann, R., Levermann, A. (2015): Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change [doi: 10.1038/nclimate2574]

Weblink to the article once it is published: http://dx.doi.org/10.1038/nclimate2574

Weblink to a previous study on more ice loss through snowfall on Antarctica: Winkelmann, R., Levermann, A., Martin, M.A., Frieler, K. (2012): Increased future ice discharge from Antarctica owing to higher snowfall. Nature [doi:10.1038/nature11616]
https://www.pik-potsdam.de/news/press-releases/archive/2012/more-ice-loss-throug...

Weblink to a previous study on Antarctica's contribution to sea-level change: Levermann, A., Winkelmann, R., Nowicki, S, Fastook, J.L., Frieler, K., Greve, R., Hellmer, H.H., Martin, M.A., Meinshausen, M., Mengel, M., Payne, A.J., Pollard, D., Sato, T., Timmermann, R., Wang, W.L., Bindschadler, R.A. (2014): Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth System Dynamics, 5, 271-293 [DOI: 10.5194/esd-5-271-2014]
https://www.pik-potsdam.de/aktuelles/pressemitteilungen/antarktis-koennte-meeres...

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>