Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glacier bacteria’s contribution to carbon cycling

06.04.2017

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a finding that has global implications as the bulk of Earth’s glaciers shrink in response to a warming climate.


Cotton Glacier stream in Antarctica

C. Foreman

The study was conducted by Heidi Smith and Christine Foreman of the Center for Biofilm Engineering in Montana State University’s College of Engineering, USA, Marcel Kuypers and Sten Littmann of the Max Planck Institute for Marine Microbiology in Bremen, Germany, and researchers at the University of Colorado at Boulder, the U.S. Geological Survey, Stockholm University in Sweden.

The paper challenges the prevailing theory that microorganisms found in glacial meltwater primarily consume ancient organic carbon that was once deposited on glacial surfaces and incorporated into ice as glaciers formed.

“We felt that there was another side to the story,” said Smith. “What we showed for the first time is that a large proportion of the organic carbon is instead coming from photosynthetic bacteria” that are also found in the ice and that become active as the ice melts, Smith said. Like plants, those bacteria absorb carbon dioxide and in turn provide a source of organic matter.

The research team made the discovery after sampling meltwater from a large stream flowing over the surface of a glacier in the McMurdo Dry Valleys region of Antarctica in 2012. Afterward, Smith spent two months at the Max Planck Institute for Marine Microbiology in Bremen, where she worked with colleagues to track how different carbon isotopes moved through the meltwater’s ecosystem, allowing the team to determine the carbon’s origin and activity.

The researchers ultimately found that the glacial microbes utilized the carbon produced by the photosynthetic bacteria at a greater rate than the older, more complex carbon molecules deposited in the ice, because the bacterial carbon is more “labile,” or easily broken down. The labile carbon “is kind of like a Snickers bar,” meaning that it’s a quick, energizing food source that’s most available to the microbes, Smith said.

Moreover, the researchers found that the photosynthetic bacteria produced roughly four times more carbon than was taken up by the microbes, resulting in an excess of organic carbon being flushed downstream. “The ecological impact of this biologically produced organic carbon on downstream ecosystems will be amplified due to its highly labile nature,” Foreman said.

Although individual glacial streams export relatively small amounts of organic carbon, the large mass of glaciers, which cover more than 10 percent of the Earth’s surface, means that total glacial runoff is an important source of the material. Marine organic carbon underpins wide-ranging ecological processes such as the production of phytoplankton, the foundation of the oceans’ foodweb.

As glaciers increasingly melt and release the organically produced, labile carbon, “we think that marine microbial communities will be most impacted,” Smith said. “We hope this generates more discussion.”

In a “News and Views” commentary accompanying the article in Nature Geoscience, Elizabeth Kujawinski, a tenured scientist at Woods Hole Oceanographic Institution, called the team’s work “an elegant combination” of research methods.

Taken together with another study published in the same issue of Nature Geoscience, about microbial carbon cycling in Greenland, Smith’s paper “deflates the notion that glacier surfaces are poor hosts for microbial metabolism,” according to Kujawinski. The two studies “have established that microbial carbon cycling on glacier surfaces cannot be ignored,” she added.

Based on Montana State University’s press release:
http://www.montana.edu/news/16819/msu-scientists-publish-study-on-glacial-carbon...

Original publication
H. J. Smith, R. A. Foster, D. M. McKnight , J. T. Lisle , S. Littmann , M. M. M. Kuypers und C. M. Foreman: Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geoscience. 

http://dx.doi.org/10.1038/ngeo2925

Begleitender News & Views
E. Kujawinski: The power of glacial microbes. Nature Geoscience.
http://dx.doi.org/10.1038/ngeo2933


Participating institutes
Montana State University, Bozeman, Montana 59717, USA
Stockholm University, Stockholm 10691, Sweden
Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
University of Colorado, Boulder, Colorado 80309, USA
US Geological Survey, St Petersburg, Florida 33701, USA

Please direct your queries to

Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 947 or 704
E-Mail: presse@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de/en/Hotspots-for-biological-activity-and-carbon-cycling-... (related press release: Hotspots for biological activity and carbon cycling on glaciers)

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>