Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German nights get brighter -- but not everywhere

26.02.2018

Satellite data show different trends for the federal states („Bundeslaender")

The nights in the German federal states („Bundesländer") have been getting brighter and brighter - but not everywhere at the same rate and with one peculiar exemption: light emissions from Thuringia decreased between 2012 and 2017.


Map of German federal states ('Bundeslaender') and light pollution: Nearly all states got brighter with one peculiar exemption: Thuringia in the eastern part of Germany got darker over the last four years.

Credit: C. Kyba / T. Küster / H. Kuechly for the GFZ

This is the result of a recent study by scientists Chris Kyba and Theres Küster from the GFZ German Research Centre for Geosciences together with Helga Kuechly from "Luftbild - Umwelt - Planung, Potsdam". Kyba and colleagues published the study in the International Journal of Sustainable Lighting IJSL. This week, they updated the maps by including the 2017 data from a satellite-born instrument.

The team measured the change of light emissions for every German state, studying both the lit area and total radiance. The trends in the lit area show a clear distinction between East and West. The lit area of the states of the former GDR including Berlin stayed basically the same (growth less than 1 per cent), whereas the states in the western part of Germany increased in the area that is lit in the night.

The lit area in Thuringia decreased by about 7%. With respect to the intensity of the lighting, the picture is more complex. Large areas in both East and West Germany show only marginal changes, while some states show growth rates of three to four per cent annually. Once again, Thuringia decreased in radiance.

The trend towards increasing night light emissions could be explained by a widespread change in outdoor lighting: LED lamps are replacing older technologies, and changing the ways in which light is used in both public and private lighting.

The researchers are still in the dark as to the reason why Thuringia shows a decreasing trend. In the study in IJSL which did not include the 2017 data, two other states appeared to decrease from 2012 to 2016: Saxony and Saxony-Anhalt. This trend, however, vanished after the team re-calculated the changes with the latest data from 2017.

Chris Kyba can only guess why Thuringia sticks out. "Maybe the data reflect the fact that older high pressure sodium lights are aging and decreasing in brightness," says Kyba. On the other hand, it could as well be that municipalities have already changed to LED lights, which appear darker to the satellite. The instrument that measured the changes, the Visible Infrared Imaging Radiometer Suite Day Night Band (DNB), detects light with wavelengths between 500 and 900 nanometers, corresponding to the colours green to red, and including invisible infrared.

White LED light includes a large component of blue light that the DNB instrument is not sensitive to. "So maybe Thuringia only looks darker simply because of the satellite's inability to see the blue light emitted from LEDs", says Kyba. He adds: "We definitely intend to follow up on this in the next years to understand the reasons behind lighting change in all of the states."

###

Original study: C. Kyba et al.: Changes in outdoor lighting in Germany from 2012-2016, in: International Journal of Sustainable Lighting IJSL (2017) http://www.lightingjournal.org/index.php/path/article/view/79/89

Josef Zens | EurekAlert!

Further reports about: EMISSIONS GFZ Helmholtz LED LED lights blue light decreased nanometers sodium

More articles from Earth Sciences:

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

nachricht Scientists find pre-earthquake activity in central Alaska
06.06.2018 | University of Alaska Fairbanks

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>