Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FSU geologist explores minerals below Earth's surface


New understanding of feldspar elasticity may explain seismic discontinuity

A Florida State University geology researcher is going deep below the Earth's surface to understand how some of the most abundant minerals that comprise the Earth's crust change under pressure.

Assistant Professor Mainak Mookherjee found that the mineral feldspar became softer under extreme pressure.

Credit: Mainak Mookherjee

In a paper published today in Scientific Reports, Assistant Professor of Geology Mainak Mookherjee explores how feldspar, one of the most important minerals in the Earth's crust, changes under pressure. Typically, materials become stiffer when pressure is applied, but Mookherjee found that these pale-colored crystals actually become softer under extreme pressures.

"I am interested in exploring these materials at extreme conditions," Mookherjee said. "Feldspar is very abundant in the earth's crust so we need to understand its elastic property."

Mookherjee's work shows that at a depth of about 30 kilometers from the Earth's surface, feldspar decomposes to denser mineral phases such as pyroxene and quartz. The densification of feldspar could partially explain a scientific observation called seismic discontinuity across the Earth's crust and mantle.

This seismic discontinuity, also called Mohorovicic discontinuity, is the boundary between the Earth's crust and mantle. It was first observed in 1909 by a Croatian scientist Andrija Mohorovicic who realized that seismograms from shallow-focus earthquakes had two sets of waves -- one that followed a direct path near the Earth's surface, i.e., crust, and the other arriving faster and probably refracted from the underlying higher-velocity medium mantle.

"This is the first study of the elastic properties of feldspar at high pressure," Mookherjee said. "And it provides very new insight and a novel way of accounting for the sharp Mohorovicic discontinuity."

Scientists have been working since the late 1950s to understand the Mohorovicic discontinuity that separates the Earth's outermost layer -- oceanic and continental crust -- with the underlying mantle. Last year, researchers from the drill ship JOIDES Resolution made attempts to drill a bore hole across the discontinuity, but fell short. Further drilling attempts are planned for future.

"We care about the mineral structures in the deep Earth and how they transform to denser crystal structures within the Earth," Mookherjee said. "Through a thorough understanding of the atomic scale structures at extreme conditions and how they influence the properties of the Earth materials, it is possible to gain valuable insight into deep Earth dynamics."


Mookherjee did his work through computer simulations at the FSU Research Computing Center and facilities at Argonne National Laboratory. The research was funded by the National Science Foundation.

Other researchers contributing to the article are Dhenu Patel, a Tallahassee high school student who interned in Mookherjee's lab last summer; Olle Heinonen from Argonne National Laboratory; Anant Hariharan from Cornell University; Ketan Maheshwari from University of Pittsburgh; and David Mainprice from Université de Montpellier.

Media Contact

Kathleen Haughney


Kathleen Haughney | EurekAlert!

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>