Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU geologist explores minerals below Earth's surface

13.10.2016

New understanding of feldspar elasticity may explain seismic discontinuity

A Florida State University geology researcher is going deep below the Earth's surface to understand how some of the most abundant minerals that comprise the Earth's crust change under pressure.


Assistant Professor Mainak Mookherjee found that the mineral feldspar became softer under extreme pressure.

Credit: Mainak Mookherjee

In a paper published today in Scientific Reports, Assistant Professor of Geology Mainak Mookherjee explores how feldspar, one of the most important minerals in the Earth's crust, changes under pressure. Typically, materials become stiffer when pressure is applied, but Mookherjee found that these pale-colored crystals actually become softer under extreme pressures.

"I am interested in exploring these materials at extreme conditions," Mookherjee said. "Feldspar is very abundant in the earth's crust so we need to understand its elastic property."

Mookherjee's work shows that at a depth of about 30 kilometers from the Earth's surface, feldspar decomposes to denser mineral phases such as pyroxene and quartz. The densification of feldspar could partially explain a scientific observation called seismic discontinuity across the Earth's crust and mantle.

This seismic discontinuity, also called Mohorovicic discontinuity, is the boundary between the Earth's crust and mantle. It was first observed in 1909 by a Croatian scientist Andrija Mohorovicic who realized that seismograms from shallow-focus earthquakes had two sets of waves -- one that followed a direct path near the Earth's surface, i.e., crust, and the other arriving faster and probably refracted from the underlying higher-velocity medium mantle.

"This is the first study of the elastic properties of feldspar at high pressure," Mookherjee said. "And it provides very new insight and a novel way of accounting for the sharp Mohorovicic discontinuity."

Scientists have been working since the late 1950s to understand the Mohorovicic discontinuity that separates the Earth's outermost layer -- oceanic and continental crust -- with the underlying mantle. Last year, researchers from the drill ship JOIDES Resolution made attempts to drill a bore hole across the discontinuity, but fell short. Further drilling attempts are planned for future.

"We care about the mineral structures in the deep Earth and how they transform to denser crystal structures within the Earth," Mookherjee said. "Through a thorough understanding of the atomic scale structures at extreme conditions and how they influence the properties of the Earth materials, it is possible to gain valuable insight into deep Earth dynamics."

###

Mookherjee did his work through computer simulations at the FSU Research Computing Center and facilities at Argonne National Laboratory. The research was funded by the National Science Foundation.

Other researchers contributing to the article are Dhenu Patel, a Tallahassee high school student who interned in Mookherjee's lab last summer; Olle Heinonen from Argonne National Laboratory; Anant Hariharan from Cornell University; Ketan Maheshwari from University of Pittsburgh; and David Mainprice from Université de Montpellier.

Media Contact

Kathleen Haughney
khaughney@fsu.edu
850-644-1489

 @floridastate

http://www.fsu.edu 

Kathleen Haughney | EurekAlert!

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>