Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frictional Heat Powers Hydrothermal Activity on Enceladus

23.11.2017

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that the moon has a porous core that allows water from the overlying ocean to seep in, where the tidal friction exerted on the rocks heats it. This shows a computer simulation based on observations from the European-American Cassini-Huygens mission.


Surface, ocean and core of Saturn's moon Enceladus. Computer simulation shows how the icy moon heats water in a porous rock core.

Source: Surface – NASA/JPL-Caltech/Space Science Institute; Core – Choblet et al (2017); Graphic composition – ESA

It also offers among others an answer to the long-standing question of where the energy that can support water in liquid form on the small, cryovulcanic moon far from the sun comes from. The Heidelberg University research group led by planetary scientist Assistant Professor Dr Frank Postberg participated in the investigation.

In 2015, the researchers had already shown that there must be hydrothermal activity on Saturn's moon. Icy volcanoes on Enceladus launch huge jets of gas and icy grains that contain fine particles of rock into space. A detector on the Cassini space probe was able to measure these particles. They originate on the seafloor more than 50,000 metres below the moon's ice shell, which ranges in thickness from three to 35 kilometres.

Using computer simulations and laboratory experiments, the scientists discovered signs that deep below the rock and the water interact – at temperatures of a least 90 degrees Celsius. But where does the energy for the hydrothermal systems that drive the transport of matter come from? And how exactly do the grains of rock get to the surface of the icy moon?

The current studies under the direction of the University of Nantes (France) offer an explanation. According to Dr Postberg, the rock core of Enceladus is probably porous, which is why the water from the overlying ocean is able to deeply permeate it. At the same time, strong tidal forces from Saturn affect the “loose” rock in the moon's core.

The new computer simulations show that the frictional heat is transferred very efficiently to the water circulating through the core, heating it to more than 90 degrees Celsius. This water dissolves some constituents of the rocky material. At certain hotspots, the hydrothermal fluids vent back into the ocean. Due to the cooling dissolved material now partially precipitates as fine particles, which are carried by the warm water to the ocean's surface. The hotspots are located primarily at the poles of Enceladus.

The ascending hydrothermal fluids probably trigger local melting in the ice layer of the polar region. According to Dr Postberg, this explains why the ice layer at the poles is considerably thinner than at the equator – three to ten kilometres versus 35 kilometres. “At the south pole, the water can even rise through fissures almost to the moon's surface.

There, the microscopically small grains of rock from the core are catapulted along with ice particles into space, where they were measured by the instruments on the Cassini space probe,” explained the Heidelberg planetary scientist. The study also showed that only this heat source in the core can keep the overlying ocean water from freezing. Without it, the ocean would completely freeze in less than 30 million years. Dr Postberg conducts research at the Klaus Tschira Laboratory for Cosmochemistry. The laboratory ist part of the Institute of Earth Sciences at Heidelberg University. It is funded by the Klaus Tschira Foundation.

The aim of the Cassini-Huygens mission, a joint project of NASA, ESA, and Italy's ASI space agency that began in 1997, was to gain new insights into the gas planet Saturn and its moons. The Cassini space probe began orbiting Saturn in 2004. The mission concluded in September of this year when the probe entered Saturn's atmosphere. The latest research results were published in the journal “Nature Astronomy”.

Original publication:
G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg & O. Souček: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy (published online 6 November 2017), doi: 10.1038/s41550-017-0289-8

Contact:
Assistant Professor Dr Frank Postberg
Institute of Earth Sciences
Klaus Tschira Laboratory for Cosmochemistry
Phone +49 6221 54-8209
frank.postberg@geow.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.geow.uni-heidelberg.de/researchgroups/postberg/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>