Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four of nine planetary boundaries now crossed

16.01.2015

Four of nine planetary boundaries have now been crossed as a result of human activity, says an international team of 18 researchers in the journal Science. The four are: climate change, loss of biosphere integrity, land-system change, altered biogeochemical cycles. The scientists say that two of these, climate change and biosphere integrity, are “core boundaries” – significantly altering either of these would “drive the Earth System into a new state”. The team will present their findings in seven seminars at the World Economic Forum in Davos (21-25 January).

The concept of planetary boundaries, developed by a global community of scholars with participation of the Potsdam Institute for Climate Impact Research (PIK) and first published in 2009, identifies nine global priorities relating to human-induced changes to the environment.

The science shows that these nine processes and systems regulate the stability and resilience of the Earth System – the interactions of land, ocean, atmosphere and life that together provide conditions upon which our societies depend. The new research confirms the original set of boundaries and provides updated analysis and quantification for several of them (see table at end). To achieve some of these quantifications, a PIK computer model (LPJmL) simulating human impacts on Earth’s water resources and ecosystems was key.

“Transgressing a boundary increases the risk that human activities could inadvertently drive the Earth System into a much less hospitable state, damaging efforts to reduce poverty and leading to a deterioration of human wellbeing in many parts of the world, including wealthy countries,” said lead author Will Steffen from the Stockholm Resilience Centre, Professor at the Stockholm University and the Australian National University, Canberra. “In this new analysis we have improved our quantification of where these risks lie.”

On the regional scale, even more boundaries are crossed

Even some boundaries that have not yet been crossed at the planetary scale were found to exceed regional tolerance limits, such as freshwater use in the western US and in parts of southern Europe, Asia and the Middle East. “The challenges for society to stay within several planetary boundaries require balanced policies,” said co-author Dieter Gerten of PIK. The boundaries are closely interlinked, and preventive measures relating to one of them can have negative repercussions on another one.

“For example, if irrigation was reduced to stay below the boundary for freshwater use, cropland may have to be expanded as a compensation measure, leading to further transgression of the boundary for land-system change,” Gerten explained. “Implementing methods to use water more efficiently in agriculture can help sort out this dilemma and at the same time increase global food production.”

Regarding climate change, the team argue that carbon dioxide levels should not cross 350 parts per million (ppm) in the atmosphere. The current level is about 399 ppm (December 2014), growing by about 3 ppm per year. “This boundary is consistent with a stabilisation of global temperatures at about 1.5 degrees above pre-industrial levels,” said co-author Professor Johan Rockström, director of the Stockholm Resilience Centre, who will present the new findings at the World Economic Forum.

In December, nations will meet in Paris to negotiate an international emissions agreement to attempt to stabilise temperatures at 2 degrees above pre-industrial levels. “Our analysis suggests that, even if successful, reaching this target contains significant risks for societies everywhere,” said Rockström. “Two degrees must therefore be seen not only as a necessary but also a minimum global climate target.”

Investigating the implications of global risks for national policy-making'

PIK maintains an extensive collaboration with the Stockholm Resilience Centre on the topic of planetary boundaries. Under the leadership of Wolfgang Lucht, Co-Chair of PIK’s department of Earth System Analysis, PIK is a founding member of the Planetary Boundaries Research Network (PB.net) to coordinate this science. PIK researchers led by Wolfgang Lucht have also recently launched a project funded by the German Environmental Agency (Umweltbundesamt) to specifically investigate the implications of planetary boundaries for national policy making.

Article:
Steffen, W., Richardson, K., Rockström, J., Cornell, S., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sörlin, S. (2015): Planetary Boundaries: Guiding human development on a changing planet. Science (Express, online)

Weblink to the article once it is published:
http://www.sciencexpress.org
(advance copies of the article can be ordered only by journalists at scipak@aaas.org)

For further information please contact:

Jonas Viering
Communications
Potsdam Institute for Climate Impact Research
press@pik-potsdam.de
Tel.: +49 (0)331 288 2507

Fredrick Moberg
Communications
Stockholm Resilience Centre
fredrik.moberg@stockholmresilience.su.se
Tel: +46 (0)70 680 65 53

Owen Gaffney
Communications
International Geosphere-Biosphere Programme (Stockholm)
owen.gaffney@igbp.kva.se
Tel: +46(0) 730208418

Weitere Informationen:

http://www.pb-net.org (Planetary Boundaries Research Network)
http://www.stockholmresilience.su.se (Stockholm Resilience Center)
http://www.pik-potsdam.de/research/earth-system-analysis/projects/flagships/open (PIK project on Planetary Boundaries)

Jonas Viering | PIK Potsdam

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>