Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four of nine planetary boundaries now crossed

16.01.2015

Four of nine planetary boundaries have now been crossed as a result of human activity, says an international team of 18 researchers in the journal Science. The four are: climate change, loss of biosphere integrity, land-system change, altered biogeochemical cycles. The scientists say that two of these, climate change and biosphere integrity, are “core boundaries” – significantly altering either of these would “drive the Earth System into a new state”. The team will present their findings in seven seminars at the World Economic Forum in Davos (21-25 January).

The concept of planetary boundaries, developed by a global community of scholars with participation of the Potsdam Institute for Climate Impact Research (PIK) and first published in 2009, identifies nine global priorities relating to human-induced changes to the environment.

The science shows that these nine processes and systems regulate the stability and resilience of the Earth System – the interactions of land, ocean, atmosphere and life that together provide conditions upon which our societies depend. The new research confirms the original set of boundaries and provides updated analysis and quantification for several of them (see table at end). To achieve some of these quantifications, a PIK computer model (LPJmL) simulating human impacts on Earth’s water resources and ecosystems was key.

“Transgressing a boundary increases the risk that human activities could inadvertently drive the Earth System into a much less hospitable state, damaging efforts to reduce poverty and leading to a deterioration of human wellbeing in many parts of the world, including wealthy countries,” said lead author Will Steffen from the Stockholm Resilience Centre, Professor at the Stockholm University and the Australian National University, Canberra. “In this new analysis we have improved our quantification of where these risks lie.”

On the regional scale, even more boundaries are crossed

Even some boundaries that have not yet been crossed at the planetary scale were found to exceed regional tolerance limits, such as freshwater use in the western US and in parts of southern Europe, Asia and the Middle East. “The challenges for society to stay within several planetary boundaries require balanced policies,” said co-author Dieter Gerten of PIK. The boundaries are closely interlinked, and preventive measures relating to one of them can have negative repercussions on another one.

“For example, if irrigation was reduced to stay below the boundary for freshwater use, cropland may have to be expanded as a compensation measure, leading to further transgression of the boundary for land-system change,” Gerten explained. “Implementing methods to use water more efficiently in agriculture can help sort out this dilemma and at the same time increase global food production.”

Regarding climate change, the team argue that carbon dioxide levels should not cross 350 parts per million (ppm) in the atmosphere. The current level is about 399 ppm (December 2014), growing by about 3 ppm per year. “This boundary is consistent with a stabilisation of global temperatures at about 1.5 degrees above pre-industrial levels,” said co-author Professor Johan Rockström, director of the Stockholm Resilience Centre, who will present the new findings at the World Economic Forum.

In December, nations will meet in Paris to negotiate an international emissions agreement to attempt to stabilise temperatures at 2 degrees above pre-industrial levels. “Our analysis suggests that, even if successful, reaching this target contains significant risks for societies everywhere,” said Rockström. “Two degrees must therefore be seen not only as a necessary but also a minimum global climate target.”

Investigating the implications of global risks for national policy-making'

PIK maintains an extensive collaboration with the Stockholm Resilience Centre on the topic of planetary boundaries. Under the leadership of Wolfgang Lucht, Co-Chair of PIK’s department of Earth System Analysis, PIK is a founding member of the Planetary Boundaries Research Network (PB.net) to coordinate this science. PIK researchers led by Wolfgang Lucht have also recently launched a project funded by the German Environmental Agency (Umweltbundesamt) to specifically investigate the implications of planetary boundaries for national policy making.

Article:
Steffen, W., Richardson, K., Rockström, J., Cornell, S., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sörlin, S. (2015): Planetary Boundaries: Guiding human development on a changing planet. Science (Express, online)

Weblink to the article once it is published:
http://www.sciencexpress.org
(advance copies of the article can be ordered only by journalists at scipak@aaas.org)

For further information please contact:

Jonas Viering
Communications
Potsdam Institute for Climate Impact Research
press@pik-potsdam.de
Tel.: +49 (0)331 288 2507

Fredrick Moberg
Communications
Stockholm Resilience Centre
fredrik.moberg@stockholmresilience.su.se
Tel: +46 (0)70 680 65 53

Owen Gaffney
Communications
International Geosphere-Biosphere Programme (Stockholm)
owen.gaffney@igbp.kva.se
Tel: +46(0) 730208418

Weitere Informationen:

http://www.pb-net.org (Planetary Boundaries Research Network)
http://www.stockholmresilience.su.se (Stockholm Resilience Center)
http://www.pik-potsdam.de/research/earth-system-analysis/projects/flagships/open (PIK project on Planetary Boundaries)

Jonas Viering | PIK Potsdam

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>