Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils Turn Out to Be a Rich Source of Information

09.02.2016

For more than 70 years, fossilized arthropods from Quercy, France, were almost completely neglected because they appeared to be poorly preserved. With the help of the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), an international and interdisciplinary team of researchers with substantial participation from the University of Bonn has now been able to X-ray the 30-million-year-old beetle fossils. The internal structures are shown in such detail that the scientists were able to create an extensive description and an evolutionary analysis of the beetles. The results of this study have now been published in the professional journal “eLIFE.”

The beetles, just a few millimeters long, come from a collection of fossilized arthropods – mainly insects – that was collected in Quercy, France more than 100 years ago. “The last time they were studied in detail was in 1944. Until now, people were mainly interested in the vertebrates from this fossil site,” says paleontologist Dr. Achim Schwermann from the Steinmann Institute at the University of Bonn. One reason the insects had been so neglected until now is that the samples outwardly seemed poorly preserved.


The rock has created a detailed mold of the beetle’s fragile legs and outer structure, thereby preserving them. Internal organs, for instance the genitalia, have also been preserved in a mineral way.

(c) Photo: Achim Schwermann/Thomas van de Kamp


Preparation: (A) The fossilized beetle. (B) Digital model: the actual beetle (green) protrudes slightly from the rock (brown). (C) The digital preparation reveals an image of the encased body parts.

(c) Photo: Achim Schwermann/Thomas van de Kamp

With the help of modern imaging methods, however, their internal structures could now be unlocked. The researchers analyzed the fossils in the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), using X-ray computed tomography. That allowed them to create a three-dimensional image of the insides of the opaque fossils.

“The actual measurement process only took a few seconds,” explains engineer Tomy dos Santos Rolo from the KIT in Karlsruhe. “During that time, the object is rotated in the path of the X-ray and imaged from various directions. After the measurement, we can digitally reconstruct the three-dimensional object.”

Reconstruction allows for a modern description

This digital reconstruction of one beetle-specimen quickly showed that it was a male animal. “The genitals have been preserved, for the most part,” says biologist Dr. Heiko Schmied from the University of Bonn. “That gives us an opportunity to describe the beetle as a representative sample according to modern standards.” Beetle species in particular are often classified based on the shape of their genitalia.

An evolutionary analysis allowed the researchers to re-evaluate how the fossilized beetle species fit into the family of hister beetles (Histeridae), a family that still exists today. “I have never seen the inside of a hister beetle in such detail before,” remarks Dr. Michael Caterino from Clemson University, South Carolina. In addition to the well-preserved genitalia, this specimen also shows mouth parts and the throat, the gastrointestinal tract and the complex respiratory system.

“A diamond in the rough”

The scientists discovered that the outwardly unpromising beetle fossils had internal organs that were amazingly well preserved. The precise detail in the fossilized beetles goes well beyond what is normally seen in fossilized arthropods. “The unusually well-preserved soft tissue shows that the beetles must have become petrified within a very short amount of time, probably hours or days,” explains Dr. Schwermann.

One beetle specimen that is partly embedded in the rock shows the outer structure of the carapace. The attached rock thus conveys what the beetle’s outer shell originally looked like. “Surprisingly, the beetle that looks the least well preserved from the outside has the best level of preservation inside,” says biologist Dr. Thomas van de Kamp from the KIT in Karlsruhe. The attached rock protected even its fragile extremities from being destroyed by external environmental influences.

Unexpected potential in old collections

While the fossilized arthropods from Quercy in France were considered less interesting during their initial study in the 1940s, this old collection turns out to be a rich source of information. “That makes us, as researchers, look at the old collections in museums and universities in a new way,” says Dr. Schwermann. The research team now plans to study other similarly preserved fossils. The fact that the Quercy beetles had been largely ignored for 70 years highlights the unrecognized potential of old collections.

Publication: Achim H. Schwermann, Tomy dos Santos Rolo, Michael S. Caterino, Günter Bechly, Heiko Schmied, Tilo Baumbach and Thomas van de Kamp: Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference; “eLife”; DOI: 10.7554/eLife.12129
Media contact:

Dr. Achim H. Schwermann
Steinmann Institute
University of Bonn
Tel: +49-228-733102
Email: achim.schwermann@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.12129 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>