Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils Turn Out to Be a Rich Source of Information

09.02.2016

For more than 70 years, fossilized arthropods from Quercy, France, were almost completely neglected because they appeared to be poorly preserved. With the help of the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), an international and interdisciplinary team of researchers with substantial participation from the University of Bonn has now been able to X-ray the 30-million-year-old beetle fossils. The internal structures are shown in such detail that the scientists were able to create an extensive description and an evolutionary analysis of the beetles. The results of this study have now been published in the professional journal “eLIFE.”

The beetles, just a few millimeters long, come from a collection of fossilized arthropods – mainly insects – that was collected in Quercy, France more than 100 years ago. “The last time they were studied in detail was in 1944. Until now, people were mainly interested in the vertebrates from this fossil site,” says paleontologist Dr. Achim Schwermann from the Steinmann Institute at the University of Bonn. One reason the insects had been so neglected until now is that the samples outwardly seemed poorly preserved.


The rock has created a detailed mold of the beetle’s fragile legs and outer structure, thereby preserving them. Internal organs, for instance the genitalia, have also been preserved in a mineral way.

(c) Photo: Achim Schwermann/Thomas van de Kamp


Preparation: (A) The fossilized beetle. (B) Digital model: the actual beetle (green) protrudes slightly from the rock (brown). (C) The digital preparation reveals an image of the encased body parts.

(c) Photo: Achim Schwermann/Thomas van de Kamp

With the help of modern imaging methods, however, their internal structures could now be unlocked. The researchers analyzed the fossils in the Synchrotron Radiation Facility ANKA at the Karlsruhe Institute of Technology (KIT), using X-ray computed tomography. That allowed them to create a three-dimensional image of the insides of the opaque fossils.

“The actual measurement process only took a few seconds,” explains engineer Tomy dos Santos Rolo from the KIT in Karlsruhe. “During that time, the object is rotated in the path of the X-ray and imaged from various directions. After the measurement, we can digitally reconstruct the three-dimensional object.”

Reconstruction allows for a modern description

This digital reconstruction of one beetle-specimen quickly showed that it was a male animal. “The genitals have been preserved, for the most part,” says biologist Dr. Heiko Schmied from the University of Bonn. “That gives us an opportunity to describe the beetle as a representative sample according to modern standards.” Beetle species in particular are often classified based on the shape of their genitalia.

An evolutionary analysis allowed the researchers to re-evaluate how the fossilized beetle species fit into the family of hister beetles (Histeridae), a family that still exists today. “I have never seen the inside of a hister beetle in such detail before,” remarks Dr. Michael Caterino from Clemson University, South Carolina. In addition to the well-preserved genitalia, this specimen also shows mouth parts and the throat, the gastrointestinal tract and the complex respiratory system.

“A diamond in the rough”

The scientists discovered that the outwardly unpromising beetle fossils had internal organs that were amazingly well preserved. The precise detail in the fossilized beetles goes well beyond what is normally seen in fossilized arthropods. “The unusually well-preserved soft tissue shows that the beetles must have become petrified within a very short amount of time, probably hours or days,” explains Dr. Schwermann.

One beetle specimen that is partly embedded in the rock shows the outer structure of the carapace. The attached rock thus conveys what the beetle’s outer shell originally looked like. “Surprisingly, the beetle that looks the least well preserved from the outside has the best level of preservation inside,” says biologist Dr. Thomas van de Kamp from the KIT in Karlsruhe. The attached rock protected even its fragile extremities from being destroyed by external environmental influences.

Unexpected potential in old collections

While the fossilized arthropods from Quercy in France were considered less interesting during their initial study in the 1940s, this old collection turns out to be a rich source of information. “That makes us, as researchers, look at the old collections in museums and universities in a new way,” says Dr. Schwermann. The research team now plans to study other similarly preserved fossils. The fact that the Quercy beetles had been largely ignored for 70 years highlights the unrecognized potential of old collections.

Publication: Achim H. Schwermann, Tomy dos Santos Rolo, Michael S. Caterino, Günter Bechly, Heiko Schmied, Tilo Baumbach and Thomas van de Kamp: Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference; “eLife”; DOI: 10.7554/eLife.12129
Media contact:

Dr. Achim H. Schwermann
Steinmann Institute
University of Bonn
Tel: +49-228-733102
Email: achim.schwermann@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.12129 Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>