Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized Bees Were Finicky Pollen Collectors

13.11.2015

The ancestors of honeybees, living 50 million years ago, were fairly choosy when it came to feeding their offspring. This is shown in a study sponsored by the University of Bonn, which also included researchers from Austria and the United States. According to the study, the pollen that these insects collected for their larvae always originated from the same plants. When it came to their own meals, they were less picky – on their collection flights, they ate pretty much everything that turned up in front of their mouth parts. The findings from this study have now appeared in the “Current Biology” trade journal.

The paleontologists studied fossilized bees from two different locations: the Messel Pit near Darmstadt and Eckfeld Maar in the Vulkaneifel. Both are former volcanic crater lakes, so deep that there was no oxygen to be found at the bottom. Any animals or plants that fell into the water were thus outstandingly preserved in the bottom sediment.


This image shows two fossilized bees and a few sample pollen types that were stuck to their back legs.

© Photo: AG Wappler/Uni Bonn


The oil shale in the Messel Pit and at Eckfeld Maar also preserved many typical plants from the Eocene era.

© Photo: AG Wappler/Uni Bonn

Nearly 50 million years ago, numerous bees met this very fate. Many of them were very well preserved in the oil shale rock. “For the first time, we are taking advantage of this circumstance in order to get a closer look at the pollen on the bees’ bodies,” explains Dr. Torsten Wappler. Dr. Wappler, an associate professor at the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn, is the first author of the study.

Bees were both generalists and specialists

In their analyses, the researchers noticed a strange pattern: the pollen near the hymenoperans’ heads, chests and abdomens came from completely different plants. The pollen on their back legs, on the other hand, mainly came from evergreen bushes, which produce very similar blossoms.

The back legs of the long-extinct hymenoptera featured characteristic structures. The bees used them as transport containers (today’s honeybees have a very similar arrangement on their back legs). The insects used their front legs to comb pollen grains out of their body hair, and then transferred the pollen to their back legs.

However, this only worked if their front legs could reach the pollen easily – we human beings have trouble scratching between our shoulder blades, after all. “The bushes where the worker bees collected food for their larvae all had a similar blossom structure,” explains Dr. Wappler. “After they visited those blossoms, the pollen mainly stuck to parts of their bodies where it was easy to transfer to their legs.”

The prehistoric bees seemed to know which plants would give them a successful harvest, and they mainly targeted those blossoms. If they got hungry on the way, they landed on plants along their flight path and sipped the nectar. The pollen that stuck to their bodies shows how undiscriminating they were in their snacking.

Searching for food without wasting time

“This was a good strategy for the bees,” points out Dr. Wappler. “When they were looking for food for the larvae, they visited blossoms that offered a high yield with little effort. On the way there, on the other hand, they ate whatever they happened to find. So they didn’t waste any time looking for especially delicious or nutritious food.”

There was one thing that especially surprised the researchers: the bees from Eckfeld Maar were 44 million years old, while those from Messel were 48 million years old. Nonetheless, they had very similar pollen patterns on their legs and bodies. Even among the precursors of today’s bumblebees, the distribution was very similar. The dual strategy thus seems to have been common in various species, and stayed consistent for millions of years.

Even today, our honeybees use a similar approach. It is possible that the very first bees, which populated the earth about 100 million years ago, did the same thing. “Unfortunately there are no finds from that era that would allow us to analyze the pollen,” says Dr. Wappler.

Publication: Torsten Wappler, Conrad C. Labandeira, Michael S. Engel, Reinhard Zetter and Friðgeir Grímsson: Specialized and generalized pollen-collection strategies in an ancient bee lineage; “Current Biology”

Contact:

PD Dr. Torsten Wappler
Steinmann Institute for Geology, Mineralogy and Paleontology
University of Bonn
Tel. 0228/73-4682
Email: twappler@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2015.09.021 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>