Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized Bees Were Finicky Pollen Collectors

13.11.2015

The ancestors of honeybees, living 50 million years ago, were fairly choosy when it came to feeding their offspring. This is shown in a study sponsored by the University of Bonn, which also included researchers from Austria and the United States. According to the study, the pollen that these insects collected for their larvae always originated from the same plants. When it came to their own meals, they were less picky – on their collection flights, they ate pretty much everything that turned up in front of their mouth parts. The findings from this study have now appeared in the “Current Biology” trade journal.

The paleontologists studied fossilized bees from two different locations: the Messel Pit near Darmstadt and Eckfeld Maar in the Vulkaneifel. Both are former volcanic crater lakes, so deep that there was no oxygen to be found at the bottom. Any animals or plants that fell into the water were thus outstandingly preserved in the bottom sediment.


This image shows two fossilized bees and a few sample pollen types that were stuck to their back legs.

© Photo: AG Wappler/Uni Bonn


The oil shale in the Messel Pit and at Eckfeld Maar also preserved many typical plants from the Eocene era.

© Photo: AG Wappler/Uni Bonn

Nearly 50 million years ago, numerous bees met this very fate. Many of them were very well preserved in the oil shale rock. “For the first time, we are taking advantage of this circumstance in order to get a closer look at the pollen on the bees’ bodies,” explains Dr. Torsten Wappler. Dr. Wappler, an associate professor at the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn, is the first author of the study.

Bees were both generalists and specialists

In their analyses, the researchers noticed a strange pattern: the pollen near the hymenoperans’ heads, chests and abdomens came from completely different plants. The pollen on their back legs, on the other hand, mainly came from evergreen bushes, which produce very similar blossoms.

The back legs of the long-extinct hymenoptera featured characteristic structures. The bees used them as transport containers (today’s honeybees have a very similar arrangement on their back legs). The insects used their front legs to comb pollen grains out of their body hair, and then transferred the pollen to their back legs.

However, this only worked if their front legs could reach the pollen easily – we human beings have trouble scratching between our shoulder blades, after all. “The bushes where the worker bees collected food for their larvae all had a similar blossom structure,” explains Dr. Wappler. “After they visited those blossoms, the pollen mainly stuck to parts of their bodies where it was easy to transfer to their legs.”

The prehistoric bees seemed to know which plants would give them a successful harvest, and they mainly targeted those blossoms. If they got hungry on the way, they landed on plants along their flight path and sipped the nectar. The pollen that stuck to their bodies shows how undiscriminating they were in their snacking.

Searching for food without wasting time

“This was a good strategy for the bees,” points out Dr. Wappler. “When they were looking for food for the larvae, they visited blossoms that offered a high yield with little effort. On the way there, on the other hand, they ate whatever they happened to find. So they didn’t waste any time looking for especially delicious or nutritious food.”

There was one thing that especially surprised the researchers: the bees from Eckfeld Maar were 44 million years old, while those from Messel were 48 million years old. Nonetheless, they had very similar pollen patterns on their legs and bodies. Even among the precursors of today’s bumblebees, the distribution was very similar. The dual strategy thus seems to have been common in various species, and stayed consistent for millions of years.

Even today, our honeybees use a similar approach. It is possible that the very first bees, which populated the earth about 100 million years ago, did the same thing. “Unfortunately there are no finds from that era that would allow us to analyze the pollen,” says Dr. Wappler.

Publication: Torsten Wappler, Conrad C. Labandeira, Michael S. Engel, Reinhard Zetter and Friðgeir Grímsson: Specialized and generalized pollen-collection strategies in an ancient bee lineage; “Current Biology”

Contact:

PD Dr. Torsten Wappler
Steinmann Institute for Geology, Mineralogy and Paleontology
University of Bonn
Tel. 0228/73-4682
Email: twappler@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2015.09.021 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>