Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized Bees Were Finicky Pollen Collectors

13.11.2015

The ancestors of honeybees, living 50 million years ago, were fairly choosy when it came to feeding their offspring. This is shown in a study sponsored by the University of Bonn, which also included researchers from Austria and the United States. According to the study, the pollen that these insects collected for their larvae always originated from the same plants. When it came to their own meals, they were less picky – on their collection flights, they ate pretty much everything that turned up in front of their mouth parts. The findings from this study have now appeared in the “Current Biology” trade journal.

The paleontologists studied fossilized bees from two different locations: the Messel Pit near Darmstadt and Eckfeld Maar in the Vulkaneifel. Both are former volcanic crater lakes, so deep that there was no oxygen to be found at the bottom. Any animals or plants that fell into the water were thus outstandingly preserved in the bottom sediment.


This image shows two fossilized bees and a few sample pollen types that were stuck to their back legs.

© Photo: AG Wappler/Uni Bonn


The oil shale in the Messel Pit and at Eckfeld Maar also preserved many typical plants from the Eocene era.

© Photo: AG Wappler/Uni Bonn

Nearly 50 million years ago, numerous bees met this very fate. Many of them were very well preserved in the oil shale rock. “For the first time, we are taking advantage of this circumstance in order to get a closer look at the pollen on the bees’ bodies,” explains Dr. Torsten Wappler. Dr. Wappler, an associate professor at the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn, is the first author of the study.

Bees were both generalists and specialists

In their analyses, the researchers noticed a strange pattern: the pollen near the hymenoperans’ heads, chests and abdomens came from completely different plants. The pollen on their back legs, on the other hand, mainly came from evergreen bushes, which produce very similar blossoms.

The back legs of the long-extinct hymenoptera featured characteristic structures. The bees used them as transport containers (today’s honeybees have a very similar arrangement on their back legs). The insects used their front legs to comb pollen grains out of their body hair, and then transferred the pollen to their back legs.

However, this only worked if their front legs could reach the pollen easily – we human beings have trouble scratching between our shoulder blades, after all. “The bushes where the worker bees collected food for their larvae all had a similar blossom structure,” explains Dr. Wappler. “After they visited those blossoms, the pollen mainly stuck to parts of their bodies where it was easy to transfer to their legs.”

The prehistoric bees seemed to know which plants would give them a successful harvest, and they mainly targeted those blossoms. If they got hungry on the way, they landed on plants along their flight path and sipped the nectar. The pollen that stuck to their bodies shows how undiscriminating they were in their snacking.

Searching for food without wasting time

“This was a good strategy for the bees,” points out Dr. Wappler. “When they were looking for food for the larvae, they visited blossoms that offered a high yield with little effort. On the way there, on the other hand, they ate whatever they happened to find. So they didn’t waste any time looking for especially delicious or nutritious food.”

There was one thing that especially surprised the researchers: the bees from Eckfeld Maar were 44 million years old, while those from Messel were 48 million years old. Nonetheless, they had very similar pollen patterns on their legs and bodies. Even among the precursors of today’s bumblebees, the distribution was very similar. The dual strategy thus seems to have been common in various species, and stayed consistent for millions of years.

Even today, our honeybees use a similar approach. It is possible that the very first bees, which populated the earth about 100 million years ago, did the same thing. “Unfortunately there are no finds from that era that would allow us to analyze the pollen,” says Dr. Wappler.

Publication: Torsten Wappler, Conrad C. Labandeira, Michael S. Engel, Reinhard Zetter and Friðgeir Grímsson: Specialized and generalized pollen-collection strategies in an ancient bee lineage; “Current Biology”

Contact:

PD Dr. Torsten Wappler
Steinmann Institute for Geology, Mineralogy and Paleontology
University of Bonn
Tel. 0228/73-4682
Email: twappler@uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2015.09.021 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>