Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil deep water sponges are similar to modern sponge assemblages

19.11.2015

German-Chinese team of scientists studies 445 million year old sediments

Fossils and sediments from deep sea zones of some thousand meters are extremely rare. Therefore, biodiversity and evolution of life in those zones are rarely explored. A German-Chinese team of scientists with participation from Göttingen University has analysed about 445 million year old shale sediments in Anhui province, South China.


Conceptual model of migration of sponges to relatively shallow water to escape from anoxic and sulphidic water (white arrow) and burial by mud turbidites (red arrow).

Image: Lixia Li und Joachim Reitner

The scientists found fossil sponge assemblages which migrated from deep water to higher ecological sea zones and which are similar to modern deep sea sponges. The results were published in Scientific Reports.

The great ice-age 445 million years ago resulted in massive ecological changes and a mass extinction of marine life. With the start of the so called recovery, the deep water sponge assemblages moved to a much higher located zone with relatively shallow water, the shelf.

“We assume that the sponges escaped from the then anoxic and sulphidic deep water”, Göttingen geobiologist Prof. Dr. Joachim Reitner says. In addition, on the shelf the sponges were buried rapidly by mud turbidities. Due to migration and burial the fossils in the analysed sediments are well-preserved, so that the scientists are the first to record sponge fossils in China.

The fossils match with modern deep water sponge assemblage. The observed assemblage is dominated by lyssakine “soft” hexactinellids (60 percent) that are typically found in deep zones of the sea. Some of them match morphologically with modern Rosella-types often found in Antarctic deep water.

Modern characteristics were found in a second group of sponges found by the scientists called demospongiae.

“These many matches show the extreme steadiness of ecological zones in deep water. This explains why the evolution of organism assemblages is slow”, Prof. Reitner says. “After the total recovery of the ecosystem the sponges re-moved to deep water zones. Those temporary movements in ecological zones are also known from other mass extinctions.”

The geobiological research in South China is a cooperation of the Faculty of Geosciences and Geography, Department of Geobiology, of Göttingen University with the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Science and the School of Earth Sciences and Engineering of Nanjing University. The research project was embedded in the “Göttingen-Nanjing Geobiology Lectures” to promote research-led teaching.

Original publication:
Lixia Li, Hongzhen Feng, Dorte Janussen, Joachim Reitner (2015): Unusual Deep Water sponge assemblage in South China – Witness of the end-Ordovician mass extinction. Scientific Reports, 5:16060, doi: 10.1038/srep16060, http://www.nature.com/articles/srep16060

Contact address:
Prof. Dr. Joachim Reitner
University of Göttingen
Faculty of Geosciences and Geography – Geobiology
Goldschmidtstrasse 3, 37073 Göttingen
Phone: +49 (0)551 39-7950
Mail: jreitne@gwdg.de
Website: www.geobiologie.uni-goettingen.de

Weitere Informationen:

http://www.nature.com/articles/srep16060
http://www.geobiologie.uni-goettingen.de

Romas Bielke | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Better model of water under extreme conditions could aid understanding of Earth's mantle
21.06.2018 | University of Chicago

nachricht The Janus head of the South Asian monsoon
21.06.2018 | Max-Planck-Institut für Chemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>