Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil deep water sponges are similar to modern sponge assemblages

19.11.2015

German-Chinese team of scientists studies 445 million year old sediments

Fossils and sediments from deep sea zones of some thousand meters are extremely rare. Therefore, biodiversity and evolution of life in those zones are rarely explored. A German-Chinese team of scientists with participation from Göttingen University has analysed about 445 million year old shale sediments in Anhui province, South China.


Conceptual model of migration of sponges to relatively shallow water to escape from anoxic and sulphidic water (white arrow) and burial by mud turbidites (red arrow).

Image: Lixia Li und Joachim Reitner

The scientists found fossil sponge assemblages which migrated from deep water to higher ecological sea zones and which are similar to modern deep sea sponges. The results were published in Scientific Reports.

The great ice-age 445 million years ago resulted in massive ecological changes and a mass extinction of marine life. With the start of the so called recovery, the deep water sponge assemblages moved to a much higher located zone with relatively shallow water, the shelf.

“We assume that the sponges escaped from the then anoxic and sulphidic deep water”, Göttingen geobiologist Prof. Dr. Joachim Reitner says. In addition, on the shelf the sponges were buried rapidly by mud turbidities. Due to migration and burial the fossils in the analysed sediments are well-preserved, so that the scientists are the first to record sponge fossils in China.

The fossils match with modern deep water sponge assemblage. The observed assemblage is dominated by lyssakine “soft” hexactinellids (60 percent) that are typically found in deep zones of the sea. Some of them match morphologically with modern Rosella-types often found in Antarctic deep water.

Modern characteristics were found in a second group of sponges found by the scientists called demospongiae.

“These many matches show the extreme steadiness of ecological zones in deep water. This explains why the evolution of organism assemblages is slow”, Prof. Reitner says. “After the total recovery of the ecosystem the sponges re-moved to deep water zones. Those temporary movements in ecological zones are also known from other mass extinctions.”

The geobiological research in South China is a cooperation of the Faculty of Geosciences and Geography, Department of Geobiology, of Göttingen University with the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Science and the School of Earth Sciences and Engineering of Nanjing University. The research project was embedded in the “Göttingen-Nanjing Geobiology Lectures” to promote research-led teaching.

Original publication:
Lixia Li, Hongzhen Feng, Dorte Janussen, Joachim Reitner (2015): Unusual Deep Water sponge assemblage in South China – Witness of the end-Ordovician mass extinction. Scientific Reports, 5:16060, doi: 10.1038/srep16060, http://www.nature.com/articles/srep16060

Contact address:
Prof. Dr. Joachim Reitner
University of Göttingen
Faculty of Geosciences and Geography – Geobiology
Goldschmidtstrasse 3, 37073 Göttingen
Phone: +49 (0)551 39-7950
Mail: jreitne@gwdg.de
Website: www.geobiologie.uni-goettingen.de

Weitere Informationen:

http://www.nature.com/articles/srep16060
http://www.geobiologie.uni-goettingen.de

Romas Bielke | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>