Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Forest Health and Global Change


Forests cover a third of the land surface and we rely on them for a wide range of wood and food products, as well as services like cleaning water and storing carbon. Forests are also key regulators of global climate because they recycle water back to the atmosphere for later rainfalls. In a review paper published on August 21, 2015 in the journal Science, researchers from Max Planck Institute for Biogeochemistry, Germany, and the Woods Hole Research Center, USA, summarize international research results on forest health and global change.

Since pre-industrial times, the area of forest has shrunk nearly 15%. It is currently decreasing at a rate of about 0.3% per year (an area equivalent to Germany every three years), due to logging and clearing that far exceeds the areas of re-growing or planted forests.

Post-fire landscape in California

S. Trumbore

But there is increasing concern over how forests respond to other, less visible, human impacts caused by hunting, selective logging, invasive pests, air pollution, and climate change.

“Some forest functions may recover quickly, in years or decades, but others could take centuries to regain pre-disturbance levels. Many of these changes will have direct impacts on the services forests provide to people” says Susan Trumbore, lead author of the review.

Changes in forest condition are often used as a proxy for forest health. However, health is well-defined only for individuals – as the absence of disease.

Although many countries carry out assessments of forest condition, researchers have struggled for decades to create operational definitions of forest health.

For example, increased tree mortality may indicate a decline in forest health at a local scale, but dying trees play an essential role in forest regeneration and nutrient cycling and are therefore a necessary component of normal forest functioning.

“For larger spatial scales, assessments of forest health are difficult due to a lack of common benchmarks that define what is a “normal” forest condition.” highlights Paulo Brando, coauthor of the article.

Reports of increased tree mortality across the globe are causing concern, however we lack the tools to analyze how big the problem is and what is causing trees to die. The satellites monitoring changes in global forest cover are limited to 30 x 30 meter pixels, where the death of a single tree will almost certainly go un-noticed.

On the smaller scale, individual trees are monitored in permanent forest plots that track all trees in an area usually ranging from 400 to 2000 square meters. Most countries contributing to the FAO (Food and Agriculture Organization of the United Nations) global assessments of forest health maintain such plots, but since methods are not standardized, it is hard to spot and attribute trends in tree mortality across boundaries.

New tools, like LiDAR (Light Detection And Ranging), are becoming available to fill the gap between plot observations and satellite imagery of the whole globe.

“Once trends in mortality are detected, we need additional research to understand how and why trees die” says Henrik Hartmann, coauthor of the publication. Experiments at tree and ecosystem scale, embedded in a monitoring framework of forest condition, are required to develop mechanistic understanding that can predict which trees are most vulnerable and how the capacity for forests to regenerate may be affected.

“Without such an understanding we will not be able to predict the trajectory of complex forest responses to multiple stressors from local to global scales”.

Forests have been around longer than people, and have already experienced some dramatic events in Earth’s history. "Forests survived a wide range of environmental changes during the millions of years of their existence. They will probably prove resilient to rapid anthropogenic changes in climate and environment, but humans should still be concerned about changes in forest condition. After all, forests can live without us, but we cannot live without them." underscores Susan Trumbore.

Original publication
Trumbore, S., Brando, P., Hartmann, H. (2015) Forest health and global change. Science Vol. 349 no. 6250 pp. 814-818, DOI: 10.1126/science.aac6759

Susan Trumbore
Max Planck Institute for Biogeochemistry

Henrik Hartmann
Max Planck Institute for Biogeochemistry

Paulo Brando
Woods Hole Research Center, USA

Weitere Informationen: - Webpage Max Planck Institute for Biogeochemistry, Jena, Germany - Webpage Woods Hole Research Center, Falmouth, MA, USA - Link to the publication in Science

Susanne Héjja | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>