Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying 100,000 kilometers through the monsoon

17.07.2015

Atmospheric researchers investigate the impact of the monsoon on air quality and climate change

By aircraft from Cyprus to the Maldives and back. What sounds like a holiday in the sun will actually be hard work for scientists of the Max Planck Institute for Chemistry. End of July the scientists from Mainz, in a team of 65 colleagues, will start a 30-day research mission to investigate the Earth’s atmosphere with the new High-altitude Long-range HALO aircraft of the German Aerospace Center (DLR).


The HALO research aircraft is equipped with numerous inlets through which air samples get to the instruments inside.

German Aerospace Center (DLR)


During a test flight Korbinian Hens (MPIC), Anke Roiger (DLR) and Markus Horstjann (University of Bremen) collect data from their instruments.

Garlich Fischbeck (KIT)

They will study how the self-cleaning capacity of the atmosphere is affected by the Asian monsoon. This self-cleaning property is central in cleaning the air from many pollutants. Short-lived, highly reactive oxidants chemically convert hydrocarbons, such as the greenhouse gas methane and emissions from industry and road traffic, making them more water soluble and thus allowing them to be removed by rain. Since air pollution in Asia is increasing drastically on a large scale, scientists suspect that this has a global impact on the atmospheric self-cleaning capacity and consequently on air quality and climate change.

“The monsoon rainfalls can wash out many soluble gases and aerosol particles from the atmosphere, however, we do not know how efficient these processes are,” says Jos Lelieveld, Director at the Max Planck Institute for Chemistry and principal investigator of the research mission. “Once we understand the chemical and transport processes of the polluted air masses in the Asian monsoon, we can improve predictions of air quality and climate change,” he adds.

In collaboration with colleagues from the Research Center Jülich, the German Aerospace Center, the Karlsruhe Institute for Technology and the universities of Bremen, Heidelberg, Leipzig and Wuppertal, the atmospheric chemists from Mainz have developed a comprehensive instrument payload for HALO, needed in this unique aircraft mission.

Following the name of a detergent, the researchers called their project “OMO”; in science, however, this is an abbreviation of “Oxidation Mechanism Observations”. In more than 120 flight hours with the HALO aircraft, they will cover about 100,000 kilometers in the atmosphere and examine the air downwind of the monsoon above Asia and the Middle East. HALO is a high-flying jet that was specially adjusted for atmospheric research, and is operated by the DLR.

On July 21, 2015, the mission will start in Paphos, Cyprus, from where HALO will fly towards the Arabian Peninsula and the Arabian Sea. Then, the aircraft, crew and team will change course to the Maldives to analyze the atmosphere over the Indian Ocean and the Bay of Bengal. Subsequently, they will fly to Cyprus again to track the monsoon outflow for two weeks before the team and the aircraft return to Germany by the end of August.

HALO has a range of about 8,000 kilometers and can fly at an altitude of more than 15 kilometers, hence the researchers can cover flight tracks up to ten hours and also perform vertical profiles to characterize the air masses. In addition to ozone, nitrogen oxides, sulfur dioxides and volatile organic components, the researchers’ instruments also detect short-lived compounds such as hydroxyl radicals, which are important for the oxidation mechanism of the atmosphere. The hydroxyl radicals are also called the “detergent” of the atmosphere. Satellite data and model calculations will complement the aircraft measurements in the analyses after the flights.

Jos Lelieveld, who has also been a part-time professor at the Cyprus Institute in Nicosia since 2008, is very excited about the measurement campaign. “I am glad that we can finally start; our teams have put an enormous amount of time, energy and work into the preparations for the OMO mission. I am very grateful to them and our colleagues in Cyprus, who have provided excellent research conditions.”

Monsoon
The monsoon is a giant air flow which regularly forms over Asia in summer when air masses warm up more rapidly over land than over the ocean. The monsoon is the world largest weather system, which is particularly strong over South Asia. Its outflow reaches over the Middle East and the Mediterranean Sea and can even reach the stratosphere.

HALO
The HALO (High-Altitude and Long-Range) research aircraft is a German aircraft dedicated to scientific research of the Earth’s atmosphere and was initiated jointly by the DLR and the Max Planck Society. It allows a previously unattained quality of measurements, particularly in the high-altitude layers between the troposphere and the stratosphere, which are difficult to get to with other measurement aircraft. The studies make an important contribution towards understanding ozone chemistry and the atmospheric transport of air pollutants.

OMO
The OMO aircraft measurement campaign addresses the “self‐cleaning capacity” of the atmosphere. It focuses on the oxidation processes and air pollution chemistry downwind of South Asia during the summer monsoon. The self‐cleaning mechanism converts natural and human‐made pollutants into soluble products that can be removed by rain. This is critical for air quality and climate change, both regionally and worldwide considering rapidly growing pollution emissions, especially in Asia.

Contact
Prof. Dr. Jos Lelieveld
Max Planck Institute for Chemistry
Telephone: +49-6131-305-4040
Email: jos.lelieveld@mpic.de

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>