Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying 100,000 kilometers through the monsoon

17.07.2015

Atmospheric researchers investigate the impact of the monsoon on air quality and climate change

By aircraft from Cyprus to the Maldives and back. What sounds like a holiday in the sun will actually be hard work for scientists of the Max Planck Institute for Chemistry. End of July the scientists from Mainz, in a team of 65 colleagues, will start a 30-day research mission to investigate the Earth’s atmosphere with the new High-altitude Long-range HALO aircraft of the German Aerospace Center (DLR).


The HALO research aircraft is equipped with numerous inlets through which air samples get to the instruments inside.

German Aerospace Center (DLR)


During a test flight Korbinian Hens (MPIC), Anke Roiger (DLR) and Markus Horstjann (University of Bremen) collect data from their instruments.

Garlich Fischbeck (KIT)

They will study how the self-cleaning capacity of the atmosphere is affected by the Asian monsoon. This self-cleaning property is central in cleaning the air from many pollutants. Short-lived, highly reactive oxidants chemically convert hydrocarbons, such as the greenhouse gas methane and emissions from industry and road traffic, making them more water soluble and thus allowing them to be removed by rain. Since air pollution in Asia is increasing drastically on a large scale, scientists suspect that this has a global impact on the atmospheric self-cleaning capacity and consequently on air quality and climate change.

“The monsoon rainfalls can wash out many soluble gases and aerosol particles from the atmosphere, however, we do not know how efficient these processes are,” says Jos Lelieveld, Director at the Max Planck Institute for Chemistry and principal investigator of the research mission. “Once we understand the chemical and transport processes of the polluted air masses in the Asian monsoon, we can improve predictions of air quality and climate change,” he adds.

In collaboration with colleagues from the Research Center Jülich, the German Aerospace Center, the Karlsruhe Institute for Technology and the universities of Bremen, Heidelberg, Leipzig and Wuppertal, the atmospheric chemists from Mainz have developed a comprehensive instrument payload for HALO, needed in this unique aircraft mission.

Following the name of a detergent, the researchers called their project “OMO”; in science, however, this is an abbreviation of “Oxidation Mechanism Observations”. In more than 120 flight hours with the HALO aircraft, they will cover about 100,000 kilometers in the atmosphere and examine the air downwind of the monsoon above Asia and the Middle East. HALO is a high-flying jet that was specially adjusted for atmospheric research, and is operated by the DLR.

On July 21, 2015, the mission will start in Paphos, Cyprus, from where HALO will fly towards the Arabian Peninsula and the Arabian Sea. Then, the aircraft, crew and team will change course to the Maldives to analyze the atmosphere over the Indian Ocean and the Bay of Bengal. Subsequently, they will fly to Cyprus again to track the monsoon outflow for two weeks before the team and the aircraft return to Germany by the end of August.

HALO has a range of about 8,000 kilometers and can fly at an altitude of more than 15 kilometers, hence the researchers can cover flight tracks up to ten hours and also perform vertical profiles to characterize the air masses. In addition to ozone, nitrogen oxides, sulfur dioxides and volatile organic components, the researchers’ instruments also detect short-lived compounds such as hydroxyl radicals, which are important for the oxidation mechanism of the atmosphere. The hydroxyl radicals are also called the “detergent” of the atmosphere. Satellite data and model calculations will complement the aircraft measurements in the analyses after the flights.

Jos Lelieveld, who has also been a part-time professor at the Cyprus Institute in Nicosia since 2008, is very excited about the measurement campaign. “I am glad that we can finally start; our teams have put an enormous amount of time, energy and work into the preparations for the OMO mission. I am very grateful to them and our colleagues in Cyprus, who have provided excellent research conditions.”

Monsoon
The monsoon is a giant air flow which regularly forms over Asia in summer when air masses warm up more rapidly over land than over the ocean. The monsoon is the world largest weather system, which is particularly strong over South Asia. Its outflow reaches over the Middle East and the Mediterranean Sea and can even reach the stratosphere.

HALO
The HALO (High-Altitude and Long-Range) research aircraft is a German aircraft dedicated to scientific research of the Earth’s atmosphere and was initiated jointly by the DLR and the Max Planck Society. It allows a previously unattained quality of measurements, particularly in the high-altitude layers between the troposphere and the stratosphere, which are difficult to get to with other measurement aircraft. The studies make an important contribution towards understanding ozone chemistry and the atmospheric transport of air pollutants.

OMO
The OMO aircraft measurement campaign addresses the “self‐cleaning capacity” of the atmosphere. It focuses on the oxidation processes and air pollution chemistry downwind of South Asia during the summer monsoon. The self‐cleaning mechanism converts natural and human‐made pollutants into soluble products that can be removed by rain. This is critical for air quality and climate change, both regionally and worldwide considering rapidly growing pollution emissions, especially in Asia.

Contact
Prof. Dr. Jos Lelieveld
Max Planck Institute for Chemistry
Telephone: +49-6131-305-4040
Email: jos.lelieveld@mpic.de

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>