Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fjords are 'hotspots' in global carbon cycling

05.05.2015

While fjords are celebrated for their beauty, these ecosystems are also major carbon sinks that likely play an important role in the regulation of the planet's climate, new research reveals.

The finding is newly published in the international journal Nature Geoscience.

After studying sediment data from worldwide fjord systems, the researchers, who include Dr Candida Savage of New Zealand's University of Otago, estimate that about 18 million tonnes of organic carbon (OC) is buried in fjords each year, equivalent to 11% of annual marine carbon burial globally.


While fjords are celebrated for their beauty, these ecosystems are also major carbon sinks that likely play an important role in the regulation of the planet's climate, new research reveals.

Credit: Candida Savage

Dr Savage and colleagues calculated that per unit area, fjord organic carbon burial rates are twice as large as the ocean average.

"Therefore, even though they account for only 0.1% of the surface area of oceans globally, fjords act as hotspots for organic carbon burial," Dr Savage says.

Fjords are long, deep and narrow estuaries formed at high latitudes during glacial periods as advancing glaciers incise major valleys near the coast. They are found in North Western Europe, Greenland, North America, New Zealand, and Antarctica.

As deep and often low oxygen marine environments, fjords provide stable sites for carbon-rich sediments to accumulate, Dr Savage says.

Carbon burial is an important natural process that provides the largest carbon sink on the planet and influences atmospheric carbon dioxide (CO2) levels at multi-thousand-year time scales.

In the Nature Geoscience article, the researchers suggest that fjords may play an especially important role as a driver of atmospheric CO2 levels during times when ice sheets are advancing or retreating.

The Earth is currently in an interglacial period after ice sheets receded around 11,700 years ago.

During glacial retreats, fjords would trap and prevent large volumes of organic carbon flowing out to the continental shelf, where chemical processes would have caused CO2 to be produced, says Dr Savage.

Once glaciers started advancing again this material would likely then be pushed out onto the shelf and CO2 production would increase.

"In essence, fjords appear to act as a major temporary storage site for organic carbon in between glacial periods. This finding has important implications for improving our understanding of global carbon cycling and climate change," she says.

The research involved fieldwork in Fiordland and analysing data from 573 surface sediment samples and 124 sediment cores from fjords around the world.

Dr. Candida Savage | EurekAlert!

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>