Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire clues in cave dripwater

21.07.2016

If you’ve ever visited an underground cave, you’ve likely seen stalagmites or stalactites: spiky, rocky structures that form on the ground or the ceiling inside caves. They grow when water at the surface seeps down through the soil and drips into underground chambers over hundreds or thousands of years. The water contains minerals that build up over time as the water drips to form the rocky structures, which look a bit like ice cream cones. The centre of the cone holds minerals that came from water that dripped long ago, while the surface contains minerals from more recent dripwater.

This means stalagmites and stalactites work as time capsules that scientists can use to study how the environment changed over the past hundreds or thousands of years.


Stalactites and stalagmites in Yonderup cave, where researchers found willdfire clues

Andy Baker

By looking into the chemistry of the water and the minerals in stalagmites and stalactites, researchers can find information about how the climate was changing above ground as these rocky structures formed.

Now, researchers in Australia and the UK have found that the rocky structures can also be used to help trace past wildfires that burned above the cave. Fires change the chemistry of the water above ground, and these subtle changes leave traces in the stalactites and stalagmites that form when the water drips in the caves underground.

The fire signals in cave dripwater look a lot like the signals for a change in climate, so scientists have to be careful not to confuse the two. The Australian and UK researchers compared the dripwater in a cave that had been affected by fire to dripwater at a cave (about 300 km away) that had the same climate but no fire.

Since the dripwater chemistry was different between the two locations, the researchers knew they had identified the record of a fire rather than a change in climate. This research shows that we can learn more about the Earth’s past from caves than we previously thought.

Find out more: Discuss with your teacher or parents

Why is it important to study caves and what can we learn from them?

How fast do stalagmites and stalactites grow?

To better understand how stalactites and stalagmites form, why not make your own? The simple experiment at http://www.sciencekids.co.nz/projects/stalactite.html will help you find out how minerals deposit to form rocky structures.

If you’d like to learn more about past, present and future climate changes and their impacts, check http://climatekids.nasa.gov/.


This is a kids' version of the EGU press release 'Fire clues in cave dripwater – researchers find wildfire signatures in cave formations for the first time', available at https://www.egu.eu/news/249/fire-clues-in-cave-dripwater-researchers-find-wildfi.... It was written by Bárbara Ferreira (EGU Media and Communications Manager), reviewed for scientific content by Anne Jefferson (Associate Professor, Kent State University, US) and Amelia Bulcock (PhD Student, Loughborough University, UK), and for educational content by Abigail Morton (Teacher, Chiang Rai International School, Thailand). For more information check:
http://www.egu.eu/education/planet-press/.

Weitere Informationen:

http://www.egu.eu/education/planet-press/40/fire-clues-in-cave-dripwater/
http://www.egu.eu/news/249/fire-clues-in-cave-dripwater-researchers-find-wildfir...
http://www.egu.eu/education/planet-press

Dr. Bárbara Ferreira | European Geosciences Union

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>