Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Field widens for environments, microbes that produce toxic form of mercury


Thawing permafrost and contaminated sediment in marine coastal areas pose some of the greatest risks for the production of highly toxic methylmercury, according to findings published in the journal Science Advances.

The discovery of these newly identified locations for methylmercury production builds on previous work in which scientists from the Department of Energy's Oak Ridge National Laboratory reported on two genes in bacteria that convert inorganic mercury into the organic form.

Coastal wetlands are just one of dozens of environments where scientists found genes that transform mercury into the neurotoxin methylmercury. (Photo courtesy of Smithsonian Environmental Research Center/Grace Schwartz)

This variety, called methylmercury, is far more dangerous to humans and the environment. Now, scientists from ORNL and the Smithsonian Environmental Research Center have found that these genes are present in microbes from many of the 3,500 environments they examined.

"We looked for genes that we know are involved in microbial mercury methylation - from deep in the ocean to Arctic permafrost to the human gut," said corresponding author Dwayne Elias of ORNL's Biosciences Division. "Using new computational methods, we examined data from thousands of sites around the globe where other scientists had sequenced every gene in that environment."

Elias noted that many of the metagenomes used in the study were obtained from the Joint Genome Institute, and tools from the Integrated Microbial Genomes System aided in the analysis.

While researchers confirmed the presence of the genes of bacteria they suspected could methylate mercury, they found several new and novel bacteria to add to the list. Researchers also looked at 1,500 human and mammalian metagenomes and concluded that there is an extremely low risk of microbial methylation of mercury within the human body. This essentially put to rest concerns raised in their work published in Environmental Science and Technology in 2013 in which they reported this possibility.

With the exception of the mammalian gut, the team found that the mercury methylation genes are abundant in nearly every oxygen-free environment, including rice paddies and marshes, aquatic sediments and certain types of bioreactors. The genes are also abundant in invertebrate digestive tracts and extreme environments. The genes were not typically found in aerated habitats such as the open ocean.

Mercury is a global pollutant released to the atmosphere through coal burning, artisanal (small-scale) mining, industrial uses and some natural processes. Most of the harm comes from methylmercury bioaccumulation, which is the buildup of the element in tissue that occurs when moving up the food chain. Ocean fish are the primary source of methylmercury in human diets worldwide.

"Understanding the source of methylmercury to marine food webs was one of our primary goals in doing this metagenomic analysis," said co-author Cynthia Gilmour of the Smithsonian Environmental Research Center. "We found an abundance of the microbial mercury methylation genes in coastal sediments such as the San Francisco Bay delta and marshes."

Other regions potentially at risk for increased methylmercury production include coastal "dead zones" like the bottom of the Chesapeake Bay and the Mississippi River plume in the Gulf of Mexico.

Elias and colleagues are looking for other microbes able to methylate mercury and are developing a universal model to further explain where this process happens -- and ways to minimize risk to humans and animals.

"While our findings still leave the source of methylmercury acquirement in open ocean fish as a bit of a mystery, it is clear that the primary source of methylmercury to humans is not from making it in our bodies," Elias said.

"It is also quite clear that as the permafrost of today becomes the thawed sediment of tomorrow due to climate change, the risk for substantial levels of methylmercury generation is high given the high gene counts and the continued emission and deposition of mercury in the Arctic."

This finding and previous work by ORNL and the Smithsonian Environmental Research Center explains why methylated mercury is produced in areas where the neurotoxin's presence had puzzled researchers for decades. The toxin, which is the most dangerous form of mercury, damages the brain and immune system and is especially harmful to developing embryos.


Other authors of the paper, titled "Global Prevalence and Distribution of Genes and Microorganism involved in Mercury Methylation," are Mircea Podar, Craig Brandt, Steven Brown, Bryan Crable, Anthony Palumbo and Anil Somenahally of ORNL and Allyson Soren of the Smithsonian Environmental Research Center. The paper is available at The research was supported by DOE's Office of Science.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

The Smithsonian Environmental Research Center has studied the science of Chesapeake Bay and coastlines around the globe since 1965. Its ecologists research invasive species, track blue crabs and other vital fisheries, study harmful chemicals and uncover the impacts of climate change. Today it houses some of the longest-running environmental field studies in the world. For more information, visit

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at Additional information about ORNL is available at the sites below:

Twitter -
RSS Feeds -
Flickr -
YouTube -
LinkedIn -
Facebook -

Ron Walli | EurekAlert!

Further reports about: Environmental Research Center genes methylation methylmercury microbes

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>