Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure of US population to extreme heat could quadruple by mid-century

19.05.2015

Interaction of warming climate with a growing, shifting population could subject more people to sweltering conditions

U.S. residents' exposure to extreme heat could increase four- to six-fold by mid-century, due to both a warming climate and a population that's growing especially fast in the hottest regions of the country, according to new research.


This graphic illustrates the expected increase in average annual person-days of exposure to extreme heat for each US Census Division when comparing the period 1971-2000 to the period 2041-2070. Person-days are calculated by multiplying the number of days when the temperature is expected to hit at least 95 degrees by the number of people who are projected to live in the areas where extreme heat is occurring. The scale is in billions.

Credit: ©UCAR.

The study, by researchers at the National Center for Atmospheric Research (NCAR) and the City University of New York (CUNY), highlights the importance of considering societal changes when trying to determine future climate impacts.

"Both population change and climate change matter," said NCAR scientist Brian O'Neill, one of the study's co-authors. "If you want to know how heat waves will affect health in the future, you have to consider both."

Extreme heat kills more people in the United States than any other weather-related event, and scientists generally expect the number of deadly heat waves to increase as the climate warms. The new study, published May 18 in the journal Nature Climate Change, finds that the overall exposure of Americans to these future heat waves would be vastly underestimated if the role of population changes were ignored.

The total number of people exposed to extreme heat is expected to increase the most in cities across the country's southern reaches, including Atlanta, Charlotte, Dallas, Houston, Oklahoma City, Phoenix, Tampa, and San Antonio.

The research was funded by the National Science Foundation, which is NCAR's sponsor, and the U.S. Department of Energy.

Climate, population, and how they interact

For the study, the research team used 11 different high-resolution simulations of future temperatures across the United States between 2041 and 2070, assuming no major reductions in greenhouse gas emissions. The simulations were produced with a suite of global and regional climate models as part of the North American Regional Climate Change Assessment Program.

Using a newly developed demographic model, the scientists also studied how the U.S. population is expected to grow and shift regionally during the same time period, assuming current migration trends within the country continue.

Total exposure to extreme heat was calculated in "person-days" by multiplying the number of days when the temperature is expected to hit at least 95 degrees by the number of people who are projected to live in the areas where extreme heat is occurring.

The results are that the average annual exposure to extreme heat in the United States during the study period is expected to be between 10 and 14 billion person-days, compared to an annual average of 2.3 billion person-days between 1971 and 2000.

Of that increase, roughly a third is due solely to the warming climate (the increase in exposure to extreme heat that would be expected even if the population remained unchanged). Another third is due solely to population change (the increase in exposure that would be expected if climate remained unchanged but the population continued to grow and people continued to moved to warmer places). The final third is due to the interaction between the two (the increase in exposure expected because the population is growing fastest in places that are also getting hotter).

"We asked, 'Where are the people moving? Where are the climate hot spots? How do those two things interact?'" said NCAR scientist Linda Mearns, also a study co-author. "When we looked at the country as a whole, we found that each factor had relatively equal effect."

At a regional scale, the picture is different. In some areas of the country, climate change packs a bigger punch than population growth and vice versa.

For example, in the U.S. Mountain region--defined by the Census Bureau as the area stretching from Montana and Idaho south to Arizona and New Mexico--the impact of a growing population significantly outstrips the impact of a warming climate. But the opposite is true in the South Atlantic region, which encompasses the area from West Virginia and Maryland south through Florida.

Exposure vs. vulnerability

Regardless of the relative role that population or climate plays, some increase in total exposure to extreme heat is expected in every region of the continental United States. Even so, the study authors caution that exposure is not necessarily the same thing as vulnerability.

"Our study does not say how vulnerable or not people might be in the future," O'Neill said. "We show that heat exposure will go up, but we don't know how many of the people exposed will or won't have air conditioners or easy access to public health centers, for example."

The authors also hope the study will inspire other researchers to more frequently incorporate social factors, such as population change, into studies of climate change impacts.

"There has been so much written regarding the potential impacts of climate change, particularly as they relate to physical climate extremes," said Bryan Jones, a postdoctoral researcher at the CUNY Institute for Demographic Research and lead author of the study. "However, it is how people experience these extremes that will ultimately shape the broader public perception of climate change."

###

About the article

Title: Future population exposure to U.S. heat extremes

Authors: Bryan Jones, Brian C. O'Neill, Larry McDaniel, Seth McGinnis, Linda O. Mearns, and Claudia Tebaldi

Publication: Nature Climate Change

On the Web

For news releases, images and more: http://www.ucar.edu/atmosnews

The University Corporation for Atmospheric Research (UCAR) manages NCAR under sponsorship by the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this release do not necessarily reflect the views of the National Science Foundation.

Media Contact

Laura Snider
NCAR/UCAR Media Relations
lsnider@ucar.edu
303-497-8605

David Hosansky
NCAR/UCAR Media Relations
hosansky@ucar.edu
303-497-8611

Laura Snider | EurekAlert!

Further reports about: Atmospheric Research CUNY Corporation Nature Climate Change grow heat heat waves waves

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>