Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Exposure of US population to extreme heat could quadruple by mid-century


Interaction of warming climate with a growing, shifting population could subject more people to sweltering conditions

U.S. residents' exposure to extreme heat could increase four- to six-fold by mid-century, due to both a warming climate and a population that's growing especially fast in the hottest regions of the country, according to new research.

This graphic illustrates the expected increase in average annual person-days of exposure to extreme heat for each US Census Division when comparing the period 1971-2000 to the period 2041-2070. Person-days are calculated by multiplying the number of days when the temperature is expected to hit at least 95 degrees by the number of people who are projected to live in the areas where extreme heat is occurring. The scale is in billions.

Credit: ©UCAR.

The study, by researchers at the National Center for Atmospheric Research (NCAR) and the City University of New York (CUNY), highlights the importance of considering societal changes when trying to determine future climate impacts.

"Both population change and climate change matter," said NCAR scientist Brian O'Neill, one of the study's co-authors. "If you want to know how heat waves will affect health in the future, you have to consider both."

Extreme heat kills more people in the United States than any other weather-related event, and scientists generally expect the number of deadly heat waves to increase as the climate warms. The new study, published May 18 in the journal Nature Climate Change, finds that the overall exposure of Americans to these future heat waves would be vastly underestimated if the role of population changes were ignored.

The total number of people exposed to extreme heat is expected to increase the most in cities across the country's southern reaches, including Atlanta, Charlotte, Dallas, Houston, Oklahoma City, Phoenix, Tampa, and San Antonio.

The research was funded by the National Science Foundation, which is NCAR's sponsor, and the U.S. Department of Energy.

Climate, population, and how they interact

For the study, the research team used 11 different high-resolution simulations of future temperatures across the United States between 2041 and 2070, assuming no major reductions in greenhouse gas emissions. The simulations were produced with a suite of global and regional climate models as part of the North American Regional Climate Change Assessment Program.

Using a newly developed demographic model, the scientists also studied how the U.S. population is expected to grow and shift regionally during the same time period, assuming current migration trends within the country continue.

Total exposure to extreme heat was calculated in "person-days" by multiplying the number of days when the temperature is expected to hit at least 95 degrees by the number of people who are projected to live in the areas where extreme heat is occurring.

The results are that the average annual exposure to extreme heat in the United States during the study period is expected to be between 10 and 14 billion person-days, compared to an annual average of 2.3 billion person-days between 1971 and 2000.

Of that increase, roughly a third is due solely to the warming climate (the increase in exposure to extreme heat that would be expected even if the population remained unchanged). Another third is due solely to population change (the increase in exposure that would be expected if climate remained unchanged but the population continued to grow and people continued to moved to warmer places). The final third is due to the interaction between the two (the increase in exposure expected because the population is growing fastest in places that are also getting hotter).

"We asked, 'Where are the people moving? Where are the climate hot spots? How do those two things interact?'" said NCAR scientist Linda Mearns, also a study co-author. "When we looked at the country as a whole, we found that each factor had relatively equal effect."

At a regional scale, the picture is different. In some areas of the country, climate change packs a bigger punch than population growth and vice versa.

For example, in the U.S. Mountain region--defined by the Census Bureau as the area stretching from Montana and Idaho south to Arizona and New Mexico--the impact of a growing population significantly outstrips the impact of a warming climate. But the opposite is true in the South Atlantic region, which encompasses the area from West Virginia and Maryland south through Florida.

Exposure vs. vulnerability

Regardless of the relative role that population or climate plays, some increase in total exposure to extreme heat is expected in every region of the continental United States. Even so, the study authors caution that exposure is not necessarily the same thing as vulnerability.

"Our study does not say how vulnerable or not people might be in the future," O'Neill said. "We show that heat exposure will go up, but we don't know how many of the people exposed will or won't have air conditioners or easy access to public health centers, for example."

The authors also hope the study will inspire other researchers to more frequently incorporate social factors, such as population change, into studies of climate change impacts.

"There has been so much written regarding the potential impacts of climate change, particularly as they relate to physical climate extremes," said Bryan Jones, a postdoctoral researcher at the CUNY Institute for Demographic Research and lead author of the study. "However, it is how people experience these extremes that will ultimately shape the broader public perception of climate change."


About the article

Title: Future population exposure to U.S. heat extremes

Authors: Bryan Jones, Brian C. O'Neill, Larry McDaniel, Seth McGinnis, Linda O. Mearns, and Claudia Tebaldi

Publication: Nature Climate Change

On the Web

For news releases, images and more:

The University Corporation for Atmospheric Research (UCAR) manages NCAR under sponsorship by the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this release do not necessarily reflect the views of the National Science Foundation.

Media Contact

Laura Snider
NCAR/UCAR Media Relations

David Hosansky
NCAR/UCAR Media Relations

Laura Snider | EurekAlert!

Further reports about: Atmospheric Research CUNY Corporation Nature Climate Change grow heat heat waves waves

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>