Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethanol refining may release more of some pollutants than previously thought

06.05.2015

Ethanol fuel refineries could be releasing much larger amounts of some ozone-forming compounds into the atmosphere than current assessments suggest, according to a new study that found emissions of these chemicals at a major ethanol fuel refinery are many times higher than government estimates.

New airborne measurements downwind from an ethanol fuel refinery in Decatur, Illinois, show that ethanol emissions are 30 times higher than government estimates. The measurements also show emissions of all volatile organic compounds (VOCs), which include ethanol, were five times higher than government numbers, which estimate emissions based on manufacturing information. VOCs and nitrogen oxides react with sunlight to form ground-level ozone, the main component of smog.

If emissions at the more than 200 fuel other ethanol refineries in the U.S. are also being underestimated, these plants could be a higher source of VOC emissions than currently thought, according to the new findings accepted for publication in the Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

Ethanol, a renewable transportation fuel made from corn, constitutes approximately 10 percent of the fuel used in gasoline vehicles in the U.S., according to the new study. The renewable fuel standard mandating the use of ethanol and other renewable fuels aims to reduce greenhouse gas emissions and petroleum imports, while encouraging development and expansion of the U.S. renewable fuels sector, according to the U.S. Environmental Protection Agency.

The new study is one of the first and most detailed investigations of emissions from ethanol fuel refining, according to its lead author Joost de Gouw, a scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder and NOAA's Earth System Research Laboratory in Boulder, Colorado. Information about the refining process is one piece of examining the entire lifecycle of ethanol fuel emissions, from growing the corn used to make the fuel to the effect of emissions on urban air quality, he said.

"Over the past decade, because of the renewable fuel mandate, we have added 10 percent of ethanol to all the gasoline that is sold in the U.S. and so the question is: what does that do to the environment," de Gouw said. "That is a very complicated question and it has many different aspects. One of the aspects is the air-quality implications and, to get at them, we have to know what are the emissions associated with producing ethanol and using ethanol. That is where this study fits in."

To make the measurements they report, de Gouw and his colleagues flew an airplane downwind of an Archer Daniels Midland ethanol refinery, the third largest producer of fuel ethanol in the U.S., and took air-quality readings at three different distances from the plant. The researchers used those to calculate emissions of various gases, including VOCs, nitrogen oxides and sulfur dioxide.

They then compared their findings with government emissions estimates from 2011. Emissions of sulfur dioxide and nitrogen oxides - compounds generated by the coal-burning plant - were in-line with government estimates, but emissions of VOCs, including ethanol, were higher than government estimates. De Gouw said the VOC emissions are likely generated by the refining process, not the coal-burning that powers it.

The researchers also used government estimates and ethanol production numbers from the Renewable Fuels Association to analyze emissions from all fuel ethanol refineries in the U.S. and compare those to emissions from burning ethanol in motor vehicles.

Prevailing estimates had indicated that refining ethanol fuel and burning it in cars and trucks generate equivalent amount of VOCs, including ethanol. But, the new emissions measurements from the Decatur plant show that ethanol emissions from production of one kilogram of ethanol at the refinery are 170 times higher than what comes out of a vehicle burning the same amount of ethanol, de Gouw said. If the Decatur refinery is like most other refineries in the U.S., he added, "the higher emissions of ethanol and VOCs that we calculated from our data would make the refining process a larger source of these gases than burning the ethanol fuel in your car."

"Obviously, this was just one refinery that we looked at, so we'd like to do more and see if these findings are more universal or if this plant was just exceptional," de Gouw added.

The new study points to the need for more measurements of emissions coming from ethanol fuel refineries, said Dylan Millet, an associate professor of atmospheric chemistry at the University of Minnesota in St. Paul. He was not involved with the new research. Additional observational data will help scientists better understand the emissions and their impact on air quality, he said.

"If we are going to accurately assess the air-quality implications of our fuel choices, then these are important emissions to know," Millet said.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Media Contact

Peter Weiss
pweiss@agu.org
202-777-7507

 @theagu

http://www.agu.org 

Peter Weiss | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>