Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial regions are prone to disruptive space weather, new study finds

24.08.2015

Space weather currents threaten equatorial power grids, not just those at high latitudes

Extreme space weather has long been seen as a threat to electrical grids in high-latitude regions of the northern and southern hemispheres. A new study finds that smaller space weather effects are amplified near the Earth’s equator, putting power grids at risk in regions long considered safe from bad space weather.


The equatorial electrojet is a naturally occurring flow of current approximately 100 kilometers (60 miles) above the surface of the Earth. New findings raise the issue of increasing power grid safeguards in regions previously thought to be less prone to space weather than high-latitude regions.

Credit: Brett A. Carter

Massive space weather events have crashed power grids across North America and Europe, but the new report warns that smaller events strike – often with little warning – in equatorial regions with greater frequency than previously known, according to Brett Carter, a visiting scholar at Boston College’s Institute for Scientific Research in Massachusetts, and lead author of the article recently accepted for publication in Geophysical Research Letters, an American Geophysical Union journal.

These equatorial electrical disruptions – fueled by geomagnetically induced currents – pose a threat to power grids in countries where shielding electricity infrastructure from space shocks has not been a recognized priority, according to the study.

“These disturbances affect what’s happening in the equatorial region, which has largely been overlooked,” said Carter, a space physicist who is also affiliated with RMIT University’s SPACE Research Centre in Australia. “What the historical data also show is that we don’t need huge geomagnetic storms to experience the effects. They can also take place during what we might otherwise classify as ‘quiet’ periods of space weather.”

In other words, electrical disruptions in the equatorial region do not require severe geomagnetic storms, similar in scale to events that have crashed power grids in the past, most notably in Quebec in 1989 and in Sweden in 2003, according to the study.

Analyzing 14 years of data collected in space and on Earth, the team found that geomagnetically induced currents are amplified by the equatorial electrojet, a naturally occurring flow of current approximately 100 kilometers (60 miles) above the surface of the Earth. Wending its way through the Earth’s ionosphere along the magnetic equator, the electrojet travels above large swaths of Africa, South America, Southeast Asia and the southern tip of India.

In their report, Carter and his team, including researchers from RMIT and Dartmouth College, examined the effects of interplanetary shocks in the solar wind, which is the stream of charged particles that flows out of the sun. Massive explosions on the sun’s surface can cause these shocks, but many are created through far less violent means.

The arrival of these shocks at Earth causes complex phenomena in the Earth’s magnetosphere and ionosphere, which provokes spikes in current at the Earth’s surface, said Carter.

“The Earth’s magnetic field does the job of shielding the Earth from the solar wind and when it gets hit by these shocks, you get a global magnetic signature at the ground,” Carter said. “This magnetic signature becomes locally amplified by rapid changes in the equatorial electrojet, which increases the induced current levels in the ground near the equator.”

While not the “doomsday” scenarios posed by extreme space weather events, these smaller episodes can damage unprotected power infrastructure and even cause fluctuations in wholesale electricity pricing, as surges in induced current at the Earth’s surface effectively confuse systems monitoring rates of supply and demand, according to the study.

Carter said the realization that the Earth’s equatorial regions are far more susceptible to disruptive space weather should prompt scientists to examine the implications on regional infrastructure and economies near the equator.

“I think this is cause for a new way of looking at the impact of adverse space weather in a largely unstudied region, where health and economic well-being are increasingly reliant on dependable power infrastructure,” added Carter.

Read more about the study at The Conversation.

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 60,000 members in 139 countries. Join the conversation on Facebook, Twitter, YouTube, and our other social media channels.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of the article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065060/full?campaign=wlytk-41855.5282060185

Or, you may order a copy of the final paper by emailing your request to Leigh Cooper at lcooper@agu.org.

Please provide your name, the name of your publication, and your phone number.

Neither the papers nor this press release is under embargo.
Title
“Interplanetary shocks and the resulting geomagnetically induced currents at the equator”

Authors:
B.A. Carter: Institute for Scientific Research, Boston College, Boston, Massachusetts, USA; and SPACE Research Centre, RMIT University, Melbourne, Victoria, Australia;

E. Yizengaw: Institute for Scientific Research, Boston College, Boston, Massachusetts, USA;

R. Pradipta: Institute for Scientific Research, Boston College, Boston, Massachusetts, USA;

A.J. Halford: Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire, USA;

R. Norman: SPACE Research Centre, RMIT University, Melbourne, Victoria, Australia;

K. Zhang: SPACE Research Centre, RMIT University, Melbourne, Victoria, Australia.

Contact Information for the Authors:
Brett Carter: office: +1 (617) 552-1393, cell: +1 (781) 290-9858, carterba@bc.edu, brett.carter@rmit.edu.au


AGU Contact:
Leigh Cooper
American Geophysical Union
+1 (202) 777-7324
lcooper@agu.org

Boston College Contact:
Ed Hayward
Boston College Office of News & Public Affairs
+1 (617) 552-4826
ed.hayward@bc.edu

Nanci Bompey | American Geophysical Union
Further information:
http://news.agu.org/press-release/equatorial-regions-are-prone-to-disruptive-space-weather-new-study-finds/

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>