Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake triggers 'slow motion' quakes in New Zealand

12.09.2017

Slow slip events, a type of slow motion earthquake that occurs over days to weeks, are thought to be capable of triggering larger, potentially damaging earthquakes. In a new study led by The University of Texas at Austin, scientists have documented the first clear-cut instance of the reverse--a massive earthquake immediately triggering a series of large slow slip events.

Some of the slow slip events occurred as far away as 300 miles from the earthquake's epicenter. The study of new linkages between the two types of seismic activity, published in Nature Geoscience on Sept. 11, may help promote better understanding of earthquake hazard posed by subduction zones, a type of fault responsible for some of the world's most powerful earthquakes.


The 7.8 magnitude Kaik?ura earthquake (marked by a red star) triggered a slow slip event (marked by red area) on New Zealand's North Island. The slow slip spanned an area comparable to the state of New Jersey. Both events occurred along a subduction zone, an area where a tectonic plate dives or "subducts" beneath an adjacent tectonic plate. This type of fault is responsible for causing some of the world's most powerful earthquakes.

Credit: The University of Texas at Austin Jackson School of Geosciences


An illustration of the amount of slow slip in centimeters that occurred after the magnitude 7.8 Kaikoura earthquake in November 2016. This is the most widespread occurrence of slow slip seen in New Zealand since scientists first observed this phenomenon in 2002. Afterslip is also shown. Afterslip is typical movement that occurs after an earthquake, but is a result of a different process than slow slip. The inset schematic shows the tectonic plates under the North Island. The Pacific Plate is moving west and is being forced under the Australian plate. The boundary where the two plates meet is under the sea east of the North Island.

Credit: GNS Science

"This is probably the clearest example worldwide of long-distance, large-scale slow slip triggering," said lead author Laura Wallace, a research scientist at the University of Texas Institute for Geophysics (UTIG). She also holds a joint position at GNS Science, a New Zealand research organization that studies natural hazards and resources.

Co-authors include other GNS scientists, as well as scientists from Georgia Tech and the University of Missouri. UTIG is a research unit of the UT Jackson School of Geosciences.

In November 2016, the second largest quake ever recorded in New Zealand -- the 7.8 magnitude Kaik?ura quake -- hit the country's South Island. A GPS network operated by GeoNet, a partnership between GNS Science and the New Zealand Earthquake Commission, detected slow slip events hundreds of miles away beneath the North Island. The events occurred along the shallow part of the Hikurangi subduction zone that runs along and across New Zealand.

A subduction zone is an area where a tectonic plate dives or "subducts" beneath an adjacent tectonic plate. This type of fault is responsible for causing some of the world's most powerful earthquakes, which occur when areas of built-up stress between the plates rupture.

Slow slip events are similar to earthquakes, as they involve more rapid than normal movement between two pieces of the Earth's crust along a fault. However, unlike earthquakes (where the movement occurs in seconds), movement in these slow slip events or "silent earthquakes" can take weeks to months to occur.

The GPS network detected the slow slip events occurring on the Hikurangi subduction zone plate boundary in the weeks and months following the Kaik?ura earthquake. The slow slip occurred at less than 9 miles deep below the surface (or seabed) and spanned an area of more than 6,000 square miles offshore from the Hawke's Bay and Gisborne regions, comparable with the area occupied by the state of New Jersey. There was also a deeper slow slip event triggered on the subduction zone at 15-24 miles beneath the Kapiti Coast region, just west of New Zealand's capital city Wellington. This deeper slow slip event near Wellington is still ongoing today.

"The slow slip event following the Kaik?ura earthquake is the largest and most widespread episode of slow slip observed in New Zealand since these observations started in 2002," Wallace said.

The triggering effect was probably accentuated by an offshore "sedimentary wedge" -- a mass of sedimentary rock piled up at the edge of the subduction zone boundary offshore from the North Island's east coast. This layer of more compliant rock is particularly susceptible to trapping seismic energy, which promotes slip between the plates at the base of the sedimentary wedge where the slow slip events occur.

"Our study also suggests that the northward traveling rupture during the Kaik?ura quake directed strong pulses of seismic energy towards the North Island, which also influenced the long-distance triggering of the slow slip events beneath the North Island," said Yoshihiro Kaneko, a seismologist at GNS Science.

Slow slip events in the past have been associated with triggering earthquakes, including the magnitude 9.0 Tohoku earthquake that struck Japan in 2011. The researchers have also found that the slow slip events triggered by the Kaik?ura quake were the catalyst for other quakes offshore from the North Island's east coast, including a magnitude 6.0 just offshore from the town of Porangahau on Nov. 22, 2016.

Although scientists are still in the early stages of trying to understand the relationships between slow slip events and earthquakes, Wallace said that the study results highlight additional linkages between these processes.

Media Contact

Anton Caputo
anton.caputo@jsg.utexas.edu
512-232-9623

 @UTAustin

http://www.utexas.edu 

Anton Caputo | EurekAlert!

More articles from Earth Sciences:

nachricht NASA flights map summer melt of Greenland Ice Sheet
11.09.2017 | NASA/Goddard Space Flight Center

nachricht Ship exhaust makes oceanic thunderstorms more intense
08.09.2017 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

Im Focus: Discovery of the most accelerated binary pulsar

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the...

Im Focus: How receptors for medicines work inside cells

G protein-coupled receptors are the key target of a large number of drugs. Würzburg scientists have now been able to show more precisely how these receptors act in the cell interior.

The human genome encodes hundreds of G protein-coupled receptors (GPCRs). These form the largest group of receptors through which hormones and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Earthquake triggers 'slow motion' quakes in New Zealand

12.09.2017 | Earth Sciences

Study of circular DNA comes full circle with use of old technique

12.09.2017 | Life Sciences

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>