Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake series cause uplift variations at continental margins

18.10.2016

A new mechanism may explain how great earthquakes with magnitudes larger than M7 are linked to coastal uplift in many regions worldwide. This has important implications for the seismic hazard and the tsunami risk along the shores of many countries. The mechanism is proposed by an international team of scientists led by Vasiliki Mouslopoulou of the GFZ German Research Centre for Geosciences in the journal Tectonics. The idea is that series of severe earthquakes within a geologically short period of time cause the rising of the land where one tectonic plate slips beneath another slab of the Earth's crust in a process called subduction.

To test their hypothesis, the scientists investigated ancient coastlines that were preserved over time, so-called paleoshorelines, to determine the rate of uplift over past millennia. Vasiliki Mouslopoulou says: "It is not unlikely that coastlines along active subduction margins with no detectable tectonic uplift over the last 10,000 years will accommodate bigger than M7 earthquakes in the near future."


Flight of marine terraces on the south coastline of Crete, Greece, eastern Mediterranean. The lower prominent paleoshoreline (indicated by the red-line) records tectonic rock uplift during the 365 AD M>8 earthquake. The higher marine terraces (indicated by the yellow-lines) record cumulative uplift over many earthquake-cycles that occurred during the last 125,000 years.

Credit: Vasiliki Mouslopoulou, GFZ

Uplift is common along the coastlines of continents at subduction systems worldwide (e.g., Kamchatka, Japan, New Zealand and Papua New Guinea) with rates of vertical uplift accrued over the last 10,000 years being generally higher - up to ten times more than for time intervals larger than 125,000 years.

This rate variability is odd and requires explanation. The origins and the magnitude of these rate variations were examined by German (GFZ) and New Zealand (University of Canterbury) scientists using a global data set of 282 uplifted paleoshorelines from eight subduction margins globally (Italy, Greece, New Zealand, Japan, Papua New Guinea, Iran-Pakistan, Chile) and 2D numerical models.

Paleoshorelines are a useful tool to constrain the magnitude and mechanisms of this uplift, as they are often spectacularly preserved as wave-cut platforms, benches and sea-notches, providing a geological record of the interplay between sea-level changes and rock uplift.

Data analysis and modelling suggest that varying uplift rates along subduction margins are mainly a short-term phenomenon. For geologists, short term means shorter than 20,000 years. These uplift rates cannot be accounted for by plate-boundary processes, as previously thought. Instead, they reflect a propensity for natural temporal variations in uplift rates where recent (not more than 10,000 years ago) uplift has been greatest due to temporal clustering of large-magnitude (bigger than M7) earthquakes on upper-plate faults.

Given the size and geographical extent of the analyzed dataset the conclusions of this work are likely to have wide applications.

Asked what's new with these findings Vasiliki Mouslopoulou explains: "For the first time temporal clustering of great-earthquakes is shown on active subduction margins, indicating an intense period of strain release due to successive earthquakes, followed by long periods of seismic quiescence." This finding has applications to the seismic hazard of these regions, as it highlights the potential for future damaging earthquakes and tsunamis at active subduction margins with no measurable recent uplift. In such cases, paleoshorelines older than 10,000 years could provide an important constraint for hazard analysis. In other words: To assess the likelihood of future great quakes it will help to look at paleoshorelines.

Further, it alerts scientists that earthquake clustering may not only characterise shallow faulting and smaller-sized earthquakes with magnitudes lower than M7 but it is a property of large subduction earthquakes.

This work presents a conceptual model in which strain is released by temporally clustered great-earthquakes that rupture faults within the upper-plate as opposed to the zone where the tectonic plates meet (plate-interface). Onno Oncken of GFZ comments: "This is an intriguing finding that changes the stereotype view that all or most great subduction earthquakes occur along the active contact, i.e. plate-interface, of the two converging plates. We hope that this new finding will promote the mapping and discovery of such faults along active subduction margins and will also help explain the variability in the recurrence of great-earthquakes encountered on many subductions globally."

###

Mouslopoulou, V., Oncken, O., Hainzl, S., Nicol, A., 2016. Uplift rate transients at subduction margins due to earthquake clustering. Tectonics, doi:10.1002/2016TC004248

Media Contact

Josef Zens
josef.zens@gfz-potsdam.de
49-331-288-1040

 @GFZ_Potsdam

http://www.gfz-potsdam.de 

Josef Zens | EurekAlert!

Further reports about: GFZ Zealand earthquake sea-level changes seismic hazard tectonic uplift

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>