Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth Day: Disease spread among species is predictable

24.04.2015

Study in California grassland expands understanding of biodiversity and management of emerging diseases

On Earth Day, a study of disease dynamics in a California grassland has revealed fundamental principles underlying the spread of pathogens, or disease-causing microbes, among species.


Wild radishes are surrounded by abundant diseased grasses.

Credit: Bruce Lyon

The results, announced today in the journal Nature, have implications for the maintenance of biodiversity and for addressing practical problems related to plant disease.

Researchers at the University of California, Santa Cruz, studied the phenomenon of "pathogen spillover" in grassland species on the UC Santa Cruz campus.

They found that the amount of disease present on each species could be predicted by the abundance of its close relatives in the grassland. When there were many individuals of the same or similar species living close together, pathogens spread more quickly.

Perhaps unexpectedly, that in turn promotes biodiversity by creating openings for less common species that are not attacked by these same pathogens.

Link between community structure and individual disease vulnerability

The findings reveal a tight link between the structure of a plant community and the vulnerability of individual species to disease.

"These scientists demonstrate that the relatedness of species in communities is an important predictor of disease prevalence," said Alan Tessier, acting director of the National Science Foundation's (NSF) Division of Environmental Biology, which funded the research.

The researchers were able to predict which plant species introduced into the grassland would be most strongly affected by naturally-occurring diseases.

Ingrid Parker, an ecologist and evolutionary biologist at UC Santa Cruz and first author of the paper, said the study adds an important new dimension to a longstanding concept in ecology known as the "rare species advantage."

Diseases take greater toll on common species

"The rare species advantage is thought to be a major driver of biodiversity in natural ecosystems," Parker said. "Most pathogens are not host specialists--they can easily move from one species to another. Whether pathogens 'spill over' depends on how closely related other species nearby are.

"Our study shows that it's the structure of the whole community around a species that affects its vulnerability to disease."

Large-scale experiment with 44 plant species

In a large-scale experiment, the researchers introduced 44 plant species from outside California. (The plants were removed before they reproduced.)

The biologists found that species with few close relatives in the grassland escaped disease, while those closely related to many resident species always showed high levels of disease.

The researchers were able to make surprisingly accurate predictions of disease in introduced species based on their phylogenetic, or evolutionary, distance from local species.

"It was kind of shocking how well we were able to predict disease at a local scale," Parker said.

Modeling "PhyloSusceptibility"

To incorporate the phylogenetic distance between species into their predictions of disease dynamics, the researchers used a "PhyloSusceptibility model" developed by scientist Gregory Gilbert at UC Santa Cruz and two other paper co-authors, Roger Magarey and Karl Suiter of North Carolina State University, who work with the U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service.

The model is based on USDA's global database of fungal pathogens and host plants, and can be used to predict the probability of two species sharing a pathogen.

"If a plant pathogen from Brazil suddenly shows up in southern California, you want to know what plants in California are most likely to be attacked," Gilbert said.

By showing that the PhyloSusceptibility model makes accurate predictions, the results suggest a range of potential applications.

The PhyloSusceptibility model could help avoid disease problems affecting proposed horticultural imports or reforestation projects.

It could also be used in agriculture to design intercropping or rotation systems to decrease crop disease.

Vulnerability of local species to "pathogen spillover"

Imported plants can bring new pathogens and pests into an area. The PhyloSusceptibility model could be used to assess the vulnerability of local species to pathogen spillover from such plant introductions, the scientists say.

While the PhyloSusceptibility model used in this study was based on data for fungal pathogens, Gilbert said the team has also created versions based on data for eight other groups of pests and pathogens, including insects, nematodes, bacteria and viruses.

###

In addition to Parker, Gilbert, Magarey and Suiter, the co-authors of the study include UC Santa Cruz researchers Megan Saunders, Megan Bontrager, Andrew Weitz and Rebecca Hendricks.

USDA also funded the work.

-NSF-

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: Disease Earth Day fungal pathogens pathogens phylogenetic plant species species

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>