Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth Day: Disease spread among species is predictable

24.04.2015

Study in California grassland expands understanding of biodiversity and management of emerging diseases

On Earth Day, a study of disease dynamics in a California grassland has revealed fundamental principles underlying the spread of pathogens, or disease-causing microbes, among species.


Wild radishes are surrounded by abundant diseased grasses.

Credit: Bruce Lyon

The results, announced today in the journal Nature, have implications for the maintenance of biodiversity and for addressing practical problems related to plant disease.

Researchers at the University of California, Santa Cruz, studied the phenomenon of "pathogen spillover" in grassland species on the UC Santa Cruz campus.

They found that the amount of disease present on each species could be predicted by the abundance of its close relatives in the grassland. When there were many individuals of the same or similar species living close together, pathogens spread more quickly.

Perhaps unexpectedly, that in turn promotes biodiversity by creating openings for less common species that are not attacked by these same pathogens.

Link between community structure and individual disease vulnerability

The findings reveal a tight link between the structure of a plant community and the vulnerability of individual species to disease.

"These scientists demonstrate that the relatedness of species in communities is an important predictor of disease prevalence," said Alan Tessier, acting director of the National Science Foundation's (NSF) Division of Environmental Biology, which funded the research.

The researchers were able to predict which plant species introduced into the grassland would be most strongly affected by naturally-occurring diseases.

Ingrid Parker, an ecologist and evolutionary biologist at UC Santa Cruz and first author of the paper, said the study adds an important new dimension to a longstanding concept in ecology known as the "rare species advantage."

Diseases take greater toll on common species

"The rare species advantage is thought to be a major driver of biodiversity in natural ecosystems," Parker said. "Most pathogens are not host specialists--they can easily move from one species to another. Whether pathogens 'spill over' depends on how closely related other species nearby are.

"Our study shows that it's the structure of the whole community around a species that affects its vulnerability to disease."

Large-scale experiment with 44 plant species

In a large-scale experiment, the researchers introduced 44 plant species from outside California. (The plants were removed before they reproduced.)

The biologists found that species with few close relatives in the grassland escaped disease, while those closely related to many resident species always showed high levels of disease.

The researchers were able to make surprisingly accurate predictions of disease in introduced species based on their phylogenetic, or evolutionary, distance from local species.

"It was kind of shocking how well we were able to predict disease at a local scale," Parker said.

Modeling "PhyloSusceptibility"

To incorporate the phylogenetic distance between species into their predictions of disease dynamics, the researchers used a "PhyloSusceptibility model" developed by scientist Gregory Gilbert at UC Santa Cruz and two other paper co-authors, Roger Magarey and Karl Suiter of North Carolina State University, who work with the U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service.

The model is based on USDA's global database of fungal pathogens and host plants, and can be used to predict the probability of two species sharing a pathogen.

"If a plant pathogen from Brazil suddenly shows up in southern California, you want to know what plants in California are most likely to be attacked," Gilbert said.

By showing that the PhyloSusceptibility model makes accurate predictions, the results suggest a range of potential applications.

The PhyloSusceptibility model could help avoid disease problems affecting proposed horticultural imports or reforestation projects.

It could also be used in agriculture to design intercropping or rotation systems to decrease crop disease.

Vulnerability of local species to "pathogen spillover"

Imported plants can bring new pathogens and pests into an area. The PhyloSusceptibility model could be used to assess the vulnerability of local species to pathogen spillover from such plant introductions, the scientists say.

While the PhyloSusceptibility model used in this study was based on data for fungal pathogens, Gilbert said the team has also created versions based on data for eight other groups of pests and pathogens, including insects, nematodes, bacteria and viruses.

###

In addition to Parker, Gilbert, Magarey and Suiter, the co-authors of the study include UC Santa Cruz researchers Megan Saunders, Megan Bontrager, Andrew Weitz and Rebecca Hendricks.

USDA also funded the work.

-NSF-

Media Contact

Cheryl Dybas
cdybas@nsf.gov
703-292-7734

 @NSF

http://www.nsf.gov 

Cheryl Dybas | EurekAlert!

Further reports about: Disease Earth Day fungal pathogens pathogens phylogenetic plant species species

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>