Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distinguishing coincidence from causality: connections in the climate system

07.10.2015

Detecting how changes in one spot on Earth – in temperature, rain, wind – are linked to changes in another, far away area is key to assessing climate risks. Scientists now developed a new technique of finding out if one change can cause another change or not, and which regions are important gateways for such teleconnections. They use advanced mathematical tools for an unprecedented analysis of data from thousands of air pressure measurements.

The method now published in Nature Communications can be applied to assess geoengineering impacts as well as global effects of local extreme weather events, and can potentially also be applied to the diffusion of disturbances in financial markets, or the human brain.


Teleconnection between ENSO and Indian Ocean - exemplary selection of causal paths. For full info, see Figure 3 in the paper.

“Despite the chaos of weather you see a lot of correlations – for instance higher pressure in the East Pacific is often followed by lower pressure in the Indian Monsoon region,” says lead-author Jakob Runge of the Potsdam Institute for Climate Impact Research (PIK).

“However, if you take a closer look, you find that many correlations are simply due to another process driving both regions, an important example being the solar cycle. So you use elaborate statistics to reveal such spurious links, find new indirect pathways, and step by step you reconstruct a network more closely representing cause and effect.” The new tool detects where major perturbations entering the climate system have the largest global effect, and via which pathways they are conveyed.

East Pacific, Indonesia, tropical Atlantic most important

The East Pacific, Indonesia and the tropical Atlantic are the regions most important for spreading and transmitting perturbations, the scientists found. One reason is that in these regions particularly huge air masses rise high up in the atmosphere. So for instance warming in the East Pacific can disturb the Indian Monsoon, even though it is thousands of kilometers away. This can put at risk yields on which millions of small farmers and in fact large parts of the population depend.

“How to robustly distinguish coincidence from causality in complex nonlinear systems has long been a riddle,” says Jürgen Kurths, co-author and head of PIK’s Research Domain Transdisciplinary Concepts and Methods. “Conventional approaches, based on pairwise association measures, in some cases showed good results. Yet these methods are rather limited. You can compare it to multiple organ failure in the human body – a real puzzle for the doctors. We’re glad that we can now present a new approach to understanding the connections, which is the basis for ideally making the whole system more resilient.”

Article: Runge, J., Petoukhov, V., Donges, J.F., Hlinka, J., Jajcay, N. Vejmelka, M., Hartman, D., Marwan, N., Palus, M., Kurths, J. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications [DOI: 10.1038/NCOMMS9502]

Link to Nature Communications where the article will be published: http://www.nature.com/ncomms/index.html

Media contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

https://www.pik-potsdam.de/news/press-releases/distinguishing-coincidence-from-c...

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>