Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert Streams: Deceptively Simple

24.10.2014

The simple topography of dryland channels presents an interesting paradox according to scientists from UCSB’s Earth Research Institute

Volatile rainstorms drive complex landscape changes in deserts, particularly in dryland channels, which are shaped by flash flooding. Paradoxically, such desert streams have surprisingly simple topography with smooth, straight and symmetrical form that until now has defied explanation.


Dryland channels exhibit very simple topography despite being shaped by volatile rainstorms. Photo Credit: Katerina Michaelides


Humid channels feature complex topography with river bars, pools or riffles. Photo Credit: Michael Singer

That paradox has been resolved in newly published research conducted by Michael Singer and Katerina Michaelides, associate researchers at UC Santa Barbara’s Earth Research Institute. The pair show that simple topography in dryland channels is maintained by complex interactions among rainstorms, the stream flows these storms generate in the river channel and sediment grains present on the riverbed. Their findings appear today in the journal Geology.

Desert streams flow only during infrequent but intense rainstorms, and when they do, only parts of the channel contain water, making the flow irregular and erratic. One rainstorm may erode sediment grains in one section of the channel, while another storm moves sediment in a different area.

“Given this localized sediment movement during rainstorms, one might expect desert channels to contain mounds of sediment that undulate down the stream course reflecting the irregular flow, but they don’t,” Singer said. “The water produced in the channel only flows partially down the stream and then stops because it seeps into the riverbed, and there’s not enough water from upstream to replace it, so it just disappears.”

Because desert river channels do not feature the river bars, pools or riffles common in perennial streams, they decline in elevation downstream very smoothly. According to the researchers’ findings, feedback between two variables — complex water and sediment movements — shape such basins.

Singer and Michaelides used data collected from the Rambla de Nogalte in southeastern Spain to model these dryland channel variables. The area has a semi-arid climate with mean annual rainfall of around 14 inches, which occurs during convective rainstorms, producing large floods that recur about once a decade.

They found that dryland channel width fluctuates downstream. Their observations show that grain size (roughness) also fluctuates from sand to gravel a downstream direction.

“There’s feedback between this fluctuating width and fluctuating grain size,” Singer said. “The stream flow is generated in a discontinuous pattern along the channel. Some rainstorms produce a bit of topography in some parts of the channel. Other spatial configurations of flow generated by storms destroy that topography so the variability of the rainstorms interacting with this channel are creating and destroying the topography constantly to keep it in this simple form.”

Singer and Michaelides also produced simulations of extreme flows to determine the volume of flow necessary to reshape the channel completely. They examined the longitudinal variability of sediment flow as well as sediment storage to find the channel-shaping threshold. This threshold reshapes the entire channel and makes it smooth again. “It’s a really significant threshold that tells us the magnitude of the flood necessary to reshape the channel,” Singer said.

“Semi-arid and arid river systems are extremely important to the populations that live around them,” he concluded. “Water resources are obviously a huge limitation in the development of societies, and a lot of water is being progressively diverted for irrigation, water use and other purposes, so those can further affect the spatial patterns of where flow is in these channels and potentially impact the processes of where topography develops in the river channel. Humans can inadvertently have an impact on the shape and form of river channels like these.”

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014459/desert-streams-deceptively-simple

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>