Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Debut of the global mix-master

26.08.2015

The Antarctic Circumpolar Current began its eastern flow through the Southern Ocean 30 million years ago after the Tasmanian gateway, migrating northward tectonically, aligned with the mid-latitude westerly wind band

Trekking across the high Canadian Arctic almost 20 years ago, Howie Scher had an unexpected encounter that helped fix the course of his career.


The Antarctic Circumpolar Current blocks the Southern Hemisphere equivalent of the Gulf Stream from delivering heat to Antarctica, Scher says.

Image: adapted from Nature

An undergraduate on a research expedition over summer break, Scher was part of a scientific group traveling deep into the Arctic Circle to collect basalt cores for paleomagnetic analysis. But as focused as the team was on finding rocks with magnetic minerals that can help establish where on Earth they had formed, it was stony deposits that had once been very much alive that really caught the team's collective eye.

"We stumbled across a fossil bone bed there," Scher says. "We were pulling out vertebrate fossils--crocodilians, turtles, bony fish--and when we got home we showed them to a paleontologist who told us it was a warm water assemblage. That was a great experience as a freshman in college, and it got me very interested in climate--just seeing how it had been so different in the past than what my experience was near the North Pole, trudging through the snow."

Now an associate professor at the University of South Carolina, Scher has made a career of climate science. He is part of an international team that recently published a report pinpointing the genesis of one of the cornerstones of the Earth's current climate system, the Antarctic Circumpolar Current.

A constant eastward flow of ocean water in the Southern Ocean encircling Antarctica, the Antarctic Circumpolar Current is akin to the Gulf Stream, the current that moves water through the Atlantic Ocean from the tip of Florida, along the east coast of North America, and, by extension into the North Atlantic Current, to the shores of western and northern Europe. The Gulf Stream's transport of warm southern waters northward is why many European countries have more temperate climates than would be expected purely from their latitudes (relatively mild London, for example, lies more than 500 miles further north than Toronto).

But if the Atlantic Circumpolar Current is something like the Gulf Stream, there's a notable difference: it's even bigger.

"It's the largest ocean current today, and it's the only one that connects all the ocean basins," Scher says. "The Atlantic, Pacific and the Indian are huge oceans, but they're all bounded by continents; they have firm boundaries. The Southern Ocean, around Antarctica, is the only band of latitude where there's an ocean that goes continuously around the globe. Because of that, the winds that blow over the Southern Ocean are unimpeded by continental barriers.

"So the distance that the wind can blow over the ocean, which as oceanographers we call the 'fetch,' is infinite. And fetch is one of the things that determines how high the waves are, how much mixing goes on in the oceans, and ultimately what drives surface ocean currents. With infinite fetch, you can have a very strong ocean current, and because this particular band of ocean connects all of the world's oceans, it transports heat and salt and nutrients all around the world."

In a paper recently published in the journal Nature, Scher and his team make the case for just when this massive ocean current first started flowing. One straightforward obstacle in the distant past was the arrangement of continental masses. Antarctica and Australia were part of a single super-continent, Gondwana, and began to separate about 83 million years ago, so the Pacific and Indian Oceans couldn't have been in contact near the South Pole before then.

It was much later than the initial separation of Australia and Antarctica that deep ocean currents could flow between the two continents, though. Paleoceanographers have identified a transition, the opening of the Tasmanian gateway, a deep-water channel between Tasmania and Antarctica, as being a necessary part of any large-scale, sustained flow on the order of the Antarctic Circumpolar Current.

Using novel information about the separation of Antarctica and Australia, Scher and his team developed a tectonic model that showed that the Tasmanian gateway first developed at least 500 meters of depth some time between 35 and 32 million years ago.

From geochemical analyses of sediment core, however, they concluded that the channel opening to that depth wasn't enough to get the Antarctic Circumpolar Current flowing. The Pacific Ocean is in contact with much younger rock than the Indian Ocean, Scher says, which leads to a distinguishing concentration in each ocean of one isotope of neodymium that has a half-life longer than that of the solar system.

By measuring neodymium isotope compositions incorporated into fish teeth fossils in core samples, the team was able to establish that eastward current flow between the Pacific and Indian Oceans didn't begin until about 30 million years ago, some 2 to 5 million years after the Tasmanian gateway opened.

Taking both geophysical and geochemical data into account, they conclude that although the Tasmanian gateway was wide enough to accommodate a deep current, the gateway was located too far south to be in contact with the mid-latitude trade winds, which are the driving force for today's eastward-flowing Antarctic Circumpolar Current.

Instead, when the gateway first opened, water initially flowed westward, the opposite of that today, in keeping with the prevailing polar winds located at the more southern latitudes.

Only as both continents, and the gateway between the two, drifted northward on their tectonic plates over the next several million years did alignment with the trade winds come about. That reversed the current flow, to the east, and the Antarctic Circumpolar Current was born.

"It's the global mix-master of the oceans--that's a quote from Wally Broecker [of Columbia University's Lamont-Doherty Earth Observatory], and that's what it's been called by oceanographers for 50 years now," Scher says. "The Antarctic Circumpolar Current is the world's largest current today, it influences heat exchange and carbon exchange, and we really didn't know for how long it's been operating, which I call a major gap in our command of Earth history. It was a cool outcome."

Media Contact

Steven Powell
spowell2@mailbox.sc.edu
803-777-1923

 @UofSC

http://www.sc.edu/ 

Steven Powell | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>