Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curbing short-lived pollutants – a win-win for climate and air quality

24.09.2015

Ozone, methane and aerosols (tiny pollutant particles) remain in the atmosphere for a shorter time than CO2, but can affect both the climate and air quality. Yet environmental policies tend to separate the two issues, with measures that fight air pollution not always bringing climate benefits and vice-versa. A new study looking into short-lived pollutants reveals measures governments could implement to substantially improve air quality as well as fight climate change. The results, by a team of scientists from around Europe and China, are published today (24 September) in Atmospheric Chemistry and Physics, an open access journal of the European Geosciences Union (EGU).

In the EU, the reduction in life expectancy due to air pollution was 7.5 months in 2010, and legislation already in place to improve air quality aims to reduce this loss to 5.2 months by 2030. The team says the new measures targeting short-lived pollutants could boost air quality and reduce loss of life expectancy even further: by a month in Europe, about two months in China and one year in India.


Preventing shale-gas leaks and ending gas flaring during oil extraction would curb emissions of methane and black carbon. (Credit: Tim Evanson)

The new mitigation measures would also bring climate benefits, reducing global temperatures by about 0.22°C by 2050, relative to a scenario without these measures. The reduced warming in the Arctic would be even larger, close to half a degree, while in Southern Europe the measures would not only reduce temperatures but also increase rainfall by about 15 mm/year, or about 4% of the total precipitation. “This could help to alleviate expected future drought and water shortages in the Mediterranean region,” says lead-author Andreas Stohl from the Norwegian Institute of Air Research.

Working within a European project called ECLIPSE, the international consortium of researchers considered short-lived substances that not only affect warming but are also air pollutants, or are transformed into air pollutants once in the atmosphere. Methane, for example, is the second strongest contributor to climate warming after CO2 and is also an ozone precursor: chemical reactions in the atmosphere involving methane produce ozone, a pollutant that presents significant health risks.

“We have found that the measures to reduce methane and other ozone precursors would significantly improve the ozone air quality, especially over northern continents. This would be good for human health and would improve crop yields, confirming the additional benefits of mitigation,” says co-author William Collins from the University of Reading, UK. Overall, the new measures would lower global anthropogenic emissions of methane by 50% and of black carbon aerosols, also known as soot, by 80%.

The scientists say the most important measures concern the oil and gas industry. Preventing unintended leaks during the extraction of shale gas would diminish methane emissions, for example. Ending the flaring of gas produced during oil extraction, on the other hand, would lower emissions of black carbon.

“There are also other important measures to reduce methane emissions from coal mining, municipal waste treatment and gas distribution, for example, as well as black carbon emission reductions through elimination of high-emitting vehicles, use of cleaner biomass cooking and heating stoves, replacement of kerosene wick lamps with LED lamps and other measures,” adds Zbigniew Klimont of the International Institute for Applied Systems Analysis, Austria, who also took part in the study.

“There is no doubt that the most important factor causing climate warming are CO2 emissions and this must be the prime target of our climate policies. Yet, there is merit in not completely ignoring other climate forcers, which could affect the rate of warming, particularly over the next few decades,” says Stohl. “And what is probably even more important: targeting these substances would lead to large improvements in global air quality.”

As detailed in the Atmospheric Chemistry and Physics study, the team looked into emission scenarios for various short-lived pollutants and into climate models to find out what the impact of specific emission reductions on climate would be. While methane and black carbon contribute to warming, other aerosols, like those formed from sulphur dioxide (released in volcanic emissions and from coal-fired power plants, for example), have a cooling effect. The team focused on emission reductions that resulted in win-win situations between climate policy and air quality policy.

While the researchers hope to see policymakers implement the ECLIPSE measures, they caution that short-lived pollutants are only a small part of the climate problem. “The project results clearly show that reductions in the emissions of short-lived species cannot replace CO2 emission reductions, not even in the short term,” warns Stohl.


Please mention the name of the publication (Atmospheric Chemistry and Physics) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.atmospheric-chemistry-and-physics.net).

MORE INFORMATION
The ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) initiative is a EU 7th Framework Programme Collaborative Project. Further information on ECLIPSE, including a policy brochure, is available from the ECLIPSE website: http://eclipse.nilu.no/.

This research is presented in the paper ‘Evaluating the climate and air quality impacts of short-lived pollutants’ to appear in the EGU open access journal Atmospheric Chemistry and Physics on 24 September 2015.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.atmos-chem-phys.net/recent_papers.html. *A pre-print version of the paper is available for at https://www.egu.eu/news/193/curbing-short-lived-pollutants-a-win-win-for-climate....*

The team is composed of A. Stohl (Norwegian Institute for Air Research, Kjeller, Norway [NILU]), B. Aamaas (Center for International Climate and Environmental Research, Oslo, Norway [CICERO]), M. Amann (International Institute for Applied Systems Analysis, Laxenburg, Austria [IIASA]), L. H. Baker and N. Bellouin (Department of Meteorology, University of Reading, UK [Reading]), T. K. Bernsten (CICERO), O. Boucher (LATMOS, Pierre and Marie Curie University, Paris, France), R. Cherian (Institute for Meteorology, University of Leipzig, Germany [Leipzig]), W. Collins (Reading & Met Office Hadley Centre, Exeter, UK), N. Daskalakis (Department of Chemistry, University of Crete, Greece [Crete] & Institute of Chemical Engineering Sciences, Platani, Greece [ICE-HT]), M. Dusinska and S. Eckhardt (NILU), J. S. Fuglestvedt (CICERO), M. Harju (NILU), C. Heyes (IIASA), Ø. Hodnebrog (CICERO), J. Hao (School of Environment, Tsinghua University, Beijing, China [Tsinghua]), U. Im (Crete, now at Aarhus University, Denmark), M. Kanakidou (Crete & ICE-HT), Z. Klimont and K. Kupiainen (IIASA), K. S. Law (Sorbonne University, Paris, France [Sorbonne]), M. T. Lund (CICERO), R. Maas (National Institute for Public Health and the Environment, Bilthoven, the Netherlands), C. R. MacIntosh (Reading), G. Myhre (CICERO), S. Myriokefalitakis (Crete and ICE-HT), D. Olivié (Norwegian Meteorological Institute, Oslo, Norway [MET]), J. Quaas (Leipzig), B. Quennehen and J.-C. Raut (Sorbonne), S. T. Rumbold (Met Office), B. H. Samset (CICERO), M. Schulz and Ø. Seland (MET), K. P. Shine (Reading), R. B. Skeie (CICERO), S. Wang (Tsinghua), K. E. Yttri (NILU), and T. Zhu (College of Environmental Sciences and Engineering, Peking University, Beijing, China).

The *European Geosciences Union (EGU, http://www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide.It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2016 General Assembly is taking place in Vienna, Austria, from 17 to 22 April 2016. For information about meeting and press registration, please check http://media.egu.eu closer to the time of the conference, or follow the EGU on Twitter (@EuroGeosciences) and Facebook (http://www.facebook.com/EuropeanGeosciencesUnion).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

*Atmospheric Chemistry and Physics (ACP, http://www.atmospheric-chemistry-and-physics.net/)* is an international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth’s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.

The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions (for details see journal subject areas). The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.

CONTACTS
Andreas Stohl
Senior Scientist
Norwegian Institute for Air Research
Kjeller, Norway
Skype: stohls
Email: ast@nilu.no
Tel: +47-6389-8035 (unavailable 20–24 September, please use Skype or Email instead)

William Collins
Professor of Atmospheric Chemistry and Earth System Modelling
University of Reading, UK
Tel: +44-118-378-7976
Email: w.collins@reading.ac.uk

Zbigniew Klimont
Research Scholar
International Institute for Applied Systems Analysis
Laxenburg, Austria
Tel: +43-2236-807-547
Email: klimont@iiasa.ac.at

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Skype: egu.media
Email: media@egu.eu
Tel: +49-89-2180-6703 (unavailable 20–24 September, please use Skype or Email instead)
EGU on Twitter: @EuroGeosciences

Weitere Informationen:

Press release on the EGU website (including image and pre-print of the scientific paper): https://www.egu.eu/news/193/curbing-short-lived-pollutants-a-win-win-for-climate...
Atmospheric Chemistry and Physics: http://www.atmospheric-chemistry-and-physics.net/

Dr. Bárbara Ferreira | European Geosciences Union

Further reports about: CICERO EGU European Geosciences Union geosciences

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>