Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmopolitan snow algae accelerate the melting of Arctic glaciers

23.06.2016

The role of red pigmented snow algae in melting Arctic glaciers has been strongly underestimated, suggests a study to be published in NATURE Communications on June 22. White areas covered with snow and ice reflect sunlight; the effect is called albedo. It has been known for quite some time that red pigmented snow algae blooming on icy surfaces darken the surface which in turn leads to less albedo and a higher uptake of heat.

The new study by Stefanie Lutz, postdoc at the German Research Centre for Geosciences GFZ and at the University of Leeds, shows a 13 per cent reduction of the albedo over the course of one melting season caused by red-pigmented snow algal blooms. "Our results point out that the "bio-albedo" effect is important and has to be considered in future climate models", says lead author Stefanie Lutz.


The red pigmented snow algae cause a darkening of the surface of ice and snow in the Arctic. GFZ researchers analyzed the biodiversity of the algae and estimated how much they contribute to the darkening of the surface.

Credit: Stefanie Lutz/GFZ


Red pigmented snow algae darken the surface of snow and ice in the Arctic.

Credit: Liane G. Benning/GFZ

The red snow phenomenon occurs mainly in warm months. During late spring and summer, thin layers of meltwater form on ice and snow in the Arctic and on mountains. Liquid water and sunlight are crucial for the growth of snow algae; over the winter season they fall into a dormant state.

In their study, the team led by Stefanie Lutz and Liane G. Benning investigated the biodiversity of snow algae and other microbial communities using high-throughput genetic sequencing. They took about forty samples from 21 glaciers in the Pan-European Arctic. The sampling sites ranged from Greenland over Iceland and Svalbard to the north of Sweden.

Together with UK colleagues they found a high biodiversity within the bacteria, depending on the locations they lived, whereas the biodiversity of the snow algal communities was rather uniform. In other words: Throughout the Arctic regions, it is most probably the same algal species that cause red snow and thus accelerate melting.

The blooming leads to a runaway effect: The more glaciers and snow fields thaw the more algae bloom which in turn results in a darkening of the surface which again accelerates melting. Liane G. Benning, head of the GFZ's section „Interface Geochemistry", says: „Our work paves the way for a universal model of algal-albedo interaction and a quantification of additional melting caused by algal blooms."

For years, "bio-albedo has been a niche topic", says Daniel Remias, biologist at the Fachhochschule Wels, Austria. The snow algae specialist comments on the study: "For the first time ever, researchers have investigated the large-scale effect of microorganisms on the melting of snow and ice the Arctic." Remias visited the GFZ for an international snow algae meeting organized by Liane G. Benning.

He stresses the interdisciplinary approach of the project: "Steffi Lutz' and Liane G. Benning's study for the first time combines microbiological and genetic analyses of red snow algae with geochemical and mineralogical properties as well as with the albedo of their habitat." An international, UK led team, including the GFZ's researchers will work this summer on the Greenland Ice Sheet where currently a record-breaking melting rate due to high temperatures is observed. Steffi Lutz, Liane G. Benning and UK colleagues will investigate whether and to what extent pigmented algae contribute to the record melting.

Media Contact

Josef Zens
josef.zens@gfz-potsdam.de
49-331-288-1049

 @GFZ_Potsdam

http://www.gfz-potsdam.de 

Josef Zens | EurekAlert!

More articles from Earth Sciences:

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

nachricht 'Tiny clocks' crystallize understanding of meteorite crashes
29.05.2017 | University of Western Ontario

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>