Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continental tug-of-war - until the rope snaps

19.07.2016

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana and Laurasia, the current continents move at speeds of 20 to 80 millimeters per year characterizing today’s plate tectonics.


The extension velocity of tectonic plates increases rapidly during continental separation. The reason is that plate speed is dependent on the strength of the rift zone, which decreases abruptly during continental stretching – similar to a rupturing rope. (Fig: GFZ, S.Brune , G. Schwalbe , S. Riedl)


Acceleration of South America during the separation from Africa. Within a few million years the speed of the continent increases from 7 to 40 millimeters per year. (Fig.: S. Brune, GFZ)

Continental breakup is still not completely scientifically understood. New research, published in the scientific journal "Nature" shows that the continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.

Of course these processes have to be seen from the geological perspective: we are talking about plates moving slowly over long time periods, centimeters per year and millions of years, respectively. South America for instance separated from Africa over a period of approximately 40 million years.

The separation process, called 'rifting' by geoscientists, began about 150 million years ago, while the two tectonic plates diverged only with 5 to 7 millimeters per year. This slowly thinned the earth's crust and led to the formation of a basin. Before the two continents separated, however, the rift velocity increased six-fold to around 40 millimeters per year. Today Africa and South America drift apart annually with about 35 millimeters per year.

"Imagine the rope snapping during a tug-of-war" describes Sascha Brune from the GFZ German Research Centre for Geosciences, lead author of the study. "At first the rope strains slowly and imperceptibly, when one fiber breaks the overall strength of the rope doesn’t change much; but rupture of the last few rope fibers occurs very abruptly."

Together with colleagues from the University of Sydney the scientist has investigated numerous different rift zones worldwide and found that many continental breakups proceeded according to this two-phase speed evolution: "Most dramatic was the case of the separation of North America and Africa," says Brune. "Roughly 240 million years ago, divergence began very slowly with only one millimeter per year." 200 million years ago, however rifting accelerated by 20 times.

Intriguingly, rift acceleration typically began about ten million years before the actual rupture of the continent, as seen during the separation of Australia and Antarctica, North America and Greenland, Africa and South America, in the North Atlantic or the South China Sea.

Therefore, the newly formed continental margins are significantly shaped by both speed stages: first, slow rifting formed the shelf regions that today are located not far below sea level and near to the coast. In the second phase the distal, deep-water domains of the continental margin were formed at higher rift velocity inducing enhanced faulting and greater volcanic activity.

The new geoscientific results have important implications for the theory of plate tectonics: today's movements of the tectonic plates are known to be governed by the descent and collision of plates and by the currents of Earth’s deep mantle. During the breakup of continents, however, rapid plate accelerations are controlled by the weakening of the continent itself and not primarily by processes in the deep interior of the Earth.

Sascha Brune, Simon E. Williams, Nathaniel P. Butterworth, and R. Dietmar Müller: ”Abrupt plate accelerations shape rifted continental margins”, Nature AOP, 18.07.2016, DOI 10.1038/nature18319

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>