Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Continental tug-of-war - until the rope snaps

19.07.2016

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana and Laurasia, the current continents move at speeds of 20 to 80 millimeters per year characterizing today’s plate tectonics.


The extension velocity of tectonic plates increases rapidly during continental separation. The reason is that plate speed is dependent on the strength of the rift zone, which decreases abruptly during continental stretching – similar to a rupturing rope. (Fig: GFZ, S.Brune , G. Schwalbe , S. Riedl)


Acceleration of South America during the separation from Africa. Within a few million years the speed of the continent increases from 7 to 40 millimeters per year. (Fig.: S. Brune, GFZ)

Continental breakup is still not completely scientifically understood. New research, published in the scientific journal "Nature" shows that the continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.

Of course these processes have to be seen from the geological perspective: we are talking about plates moving slowly over long time periods, centimeters per year and millions of years, respectively. South America for instance separated from Africa over a period of approximately 40 million years.

The separation process, called 'rifting' by geoscientists, began about 150 million years ago, while the two tectonic plates diverged only with 5 to 7 millimeters per year. This slowly thinned the earth's crust and led to the formation of a basin. Before the two continents separated, however, the rift velocity increased six-fold to around 40 millimeters per year. Today Africa and South America drift apart annually with about 35 millimeters per year.

"Imagine the rope snapping during a tug-of-war" describes Sascha Brune from the GFZ German Research Centre for Geosciences, lead author of the study. "At first the rope strains slowly and imperceptibly, when one fiber breaks the overall strength of the rope doesn’t change much; but rupture of the last few rope fibers occurs very abruptly."

Together with colleagues from the University of Sydney the scientist has investigated numerous different rift zones worldwide and found that many continental breakups proceeded according to this two-phase speed evolution: "Most dramatic was the case of the separation of North America and Africa," says Brune. "Roughly 240 million years ago, divergence began very slowly with only one millimeter per year." 200 million years ago, however rifting accelerated by 20 times.

Intriguingly, rift acceleration typically began about ten million years before the actual rupture of the continent, as seen during the separation of Australia and Antarctica, North America and Greenland, Africa and South America, in the North Atlantic or the South China Sea.

Therefore, the newly formed continental margins are significantly shaped by both speed stages: first, slow rifting formed the shelf regions that today are located not far below sea level and near to the coast. In the second phase the distal, deep-water domains of the continental margin were formed at higher rift velocity inducing enhanced faulting and greater volcanic activity.

The new geoscientific results have important implications for the theory of plate tectonics: today's movements of the tectonic plates are known to be governed by the descent and collision of plates and by the currents of Earth’s deep mantle. During the breakup of continents, however, rapid plate accelerations are controlled by the weakening of the continent itself and not primarily by processes in the deep interior of the Earth.

Sascha Brune, Simon E. Williams, Nathaniel P. Butterworth, and R. Dietmar Müller: ”Abrupt plate accelerations shape rifted continental margins”, Nature AOP, 18.07.2016, DOI 10.1038/nature18319

Dipl.Met. Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>