Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015

Understanding the differences and similarities will help improve how models represent storm clouds and other convective processes.

The Science


Image courtesy of the ARM Climate Research Facility (Flickr) via a Creative Commons License

Data collected from the Atmospheric Radiation Measurement Climate Research Facility’s Southern Great Plains site (shown here) was used to evaluate and compare climate model simulations of precipitation.

Precipitation is difficult to represent in global climate models. Although most single-column models can reproduce the observed average precipitation reasonably well, there are significant differences in their details, including mean precipitation intensity. Scientists evaluated the performance of seven single-column models, used by global models to complex processes, by comparing simulated surface precipitation with observations.

The Impact

The different single-column models’ performances and associations with large-scale conditions provide insights on how to improve climate models’ representation of convection, the movement of heat or air through fluids. Convection is integral to forming storm clouds. The insights gained here will also improve approaches for future testing.

Summary

Precipitation is one of the most poorly parameterized physical processes in global climate models. Scientists often use a single grid-box column of a global climate model or a single-column model to more efficiently study and test the process representations or parameterization schemes in global climate models. The single-column model approach is also a key strategy of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research activity.

However, most single-column model intercomparison studies organized by ARM have been focused on special cases or week- to month-long periods. To make a statistically meaningful comparison and evaluation of modeled precipitation, researchers conducted 3-year-long single-column model simulations of seven global climate models participating in the Fast-physics System Testbed and Research (FASTER) project at the ARM Southern Great Plains site.

Results of the study, conducted by DOE scientists at Brookhaven National Laboratory, show that although most single column models can reproduce the observed average precipitation reasonably well, there are significant differences in their details.

These variations (both among models and between models and observations) include differences between daytime and nighttime, warm and cold seasons, frequency and mean precipitation intensity, and convective and stratiform partition. Further analysis reveals distinct meteorological backgrounds for large underestimation and overestimation precipitation events. The former occur in strong ascending regimes with negative low-level horizontal heat and moisture influx, while the latter occur in the weak or moderate ascending regimes with positive low-level horizontal heat and moisture influx.

Funding

This work is part of the FASTER project supported by the U.S. Department of Energy’s Earth System Modeling program.

Publication

H. Song, W. Lin, Y. Lin, A.B. Wolf, R. Neggers, L.J. Donner, A.D. Del Genio, Y. Liu, “Evaluation of precipitation simulated by seven SCMs against the ARM observations at the SGP site.” Journal of Climate 26 (15), 5467–5492 (2013). [DOI: 10.1175/JCLI-D-12-00263.1]

Kristin Manke | newswise

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>