Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold Hotspots: METEOR expedition takes a close look at upwelling zones in the Baltic Sea

28.07.2015

On July 23, 2015, the FS METEOR set to sea for her second big research cruise this year. Starting from the port of Hamburg, the German open sea research vessel will spend the first month of the four-month expedition in the Baltic Sea. Under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) the research focus of this leg of the expedition lies on biochemical processes of upwelling zones in the Gotland Basin and the Gulf of Finland.

Upwelling is a process, which is initiated by certain wind regimes. Deep water that differs significantly from upper water layers is transported to the surface of the sea. Screened from the sun, it is much colder and enriched with nutrients and other dissolved substances, which have been released into the water by microbial degradation of organic matter at the sea floor.


In July and August 2015 the German open sea research vessel METEOR is cruising the Baltic Sea. Her research focus: the biochemistry of upwelling zones.

IOW / R. Prien

The surface water, on the other hand, is significantly warmed up by solar energy during summer and mostly depleted of nutrients. “Upwelling zones are quite frequent in the Baltic Sea, but sometimes exist only for a few days. They are exciting ‘hotspots’ for marine researchers, because a lot is going on there.

The temperature drop, but mostly the supply of fresh nutrients alters the environment for the communities of planktonic organisms as well as the conditions for air-sea exchange processes on a very small temporal and spatial scale,” comments Günther Nausch on the research focus of METEOR cruise 117 titled “BioChemUpwell”.

As deputy chief scientist, the longstanding IOW expert for marine chemistry and matter cycles is responsible for the scientific coordination of the cruise together with chief scientist Oliver Wurl from the Institute for Chemistry and Biology of the Marine Environment (ICBM) in Oldenburg. “To study the upwelling events from as many angles as possible, five project groups from three different research institutions have joined forces to take advantage of the synergies of such a collaborative expedition,” adds Nausch.

26 scientists in total, amongst them 20 IOW researchers, participate in the METEOR cruise 117 as scientific crew. Group 1 under the lead of IOW addresses the interaction of the cold upwelling water, which transports nutrients – especially phosphorus– upwards, and the development of cyanobacteria blooms.

The research aims at supporting a better forecast and management of those blooms, which are potentially harmful for animals and humans. Group 2, headed by ICBM, explores the impact of the CO2 enriched deep water of upwelling systems on carbon fluxes and primary productivity at the surface.

In particular, the researchers investigate the formation of the micro-layers within upwelling zones and their impact on the air-sea CO2 exchange by using highly developed sensors as well as in-situ sampling devices especially developed for this expedition. Group 3 under the lead of the Leibniz Institute for Tropospheric Research (TROPOS) also concentrates on the interface of sea and atmosphere:

The scientists analyze the effect of upwelling zones on the composition of aerosols as these airborne climate relevant particles are significantly influenced by what kind of micro-layers exists on the sea surface. Group 4 under IOW lead investigates the sources of organic mercury compounds in oxygen depleted deeper water layers. Furthermore, the group analyzes, how the upward transport affects these substances and if – by consequence – an air-sea gas exchange of volatile mercury compounds increases the biological availability of these pollutants.

Group 5, also headed by IOW, examines, how the energy turnover within zooplankton communities changes in response to varying food quality. Such variability can be caused by upwelling events as they significantly affect the composition of phytoplankton, on which the zooplankton feeds. Last but not least, IOW project group 6 is responsible for the data collection within various long-term monitoring programs. This includes the measurement in varying depths of temperature, salinity and the concentration of nutrients, oxygen, and chlorophyll as well as the survey of phyto- and zooplankton composition.

The METEOR’s track to the Eastern Gotland Basin and to the Gulf of Finland is in parts flexible as the occurrence of upwelling zones cannot be predicted in time and space. “We will be able to recognize the current position of an upwelling zone by our routine measurements on board as the key parameters of the cold water from deeper layers differ very recognizably from those of the surface water.

In addition, we will cooperate closely with our land-based IOW colleagues from the remote sensing team, who will constantly supply us with satellite information on the sea surface temperature and the occurrence of sudden cold spots, which typically indicate an upwelling event,” explains Günther Nausch. The METEOR cruise 117 will be concluded on August 17, 2015, in Rostock, where the scientific crew of this particular part of the expedition will disembark. Afterwards, three more cruise legs will lead the METEOR into the Atlantic with her final destination in the port of Walvis Bay/Namibia.

More information on the research vessel METEOR:
http://www.portal-forschungsschiffe.de/index.php?index=53

*Press and Public Relations at IOW:
Dr. Kristin Beck | Tel.: 0381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Tel.: 0381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (http://www.leibniz-gemeinschaft.de/en/home/)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>