Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cold Hotspots: METEOR expedition takes a close look at upwelling zones in the Baltic Sea


On July 23, 2015, the FS METEOR set to sea for her second big research cruise this year. Starting from the port of Hamburg, the German open sea research vessel will spend the first month of the four-month expedition in the Baltic Sea. Under the lead of the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) the research focus of this leg of the expedition lies on biochemical processes of upwelling zones in the Gotland Basin and the Gulf of Finland.

Upwelling is a process, which is initiated by certain wind regimes. Deep water that differs significantly from upper water layers is transported to the surface of the sea. Screened from the sun, it is much colder and enriched with nutrients and other dissolved substances, which have been released into the water by microbial degradation of organic matter at the sea floor.

In July and August 2015 the German open sea research vessel METEOR is cruising the Baltic Sea. Her research focus: the biochemistry of upwelling zones.

IOW / R. Prien

The surface water, on the other hand, is significantly warmed up by solar energy during summer and mostly depleted of nutrients. “Upwelling zones are quite frequent in the Baltic Sea, but sometimes exist only for a few days. They are exciting ‘hotspots’ for marine researchers, because a lot is going on there.

The temperature drop, but mostly the supply of fresh nutrients alters the environment for the communities of planktonic organisms as well as the conditions for air-sea exchange processes on a very small temporal and spatial scale,” comments Günther Nausch on the research focus of METEOR cruise 117 titled “BioChemUpwell”.

As deputy chief scientist, the longstanding IOW expert for marine chemistry and matter cycles is responsible for the scientific coordination of the cruise together with chief scientist Oliver Wurl from the Institute for Chemistry and Biology of the Marine Environment (ICBM) in Oldenburg. “To study the upwelling events from as many angles as possible, five project groups from three different research institutions have joined forces to take advantage of the synergies of such a collaborative expedition,” adds Nausch.

26 scientists in total, amongst them 20 IOW researchers, participate in the METEOR cruise 117 as scientific crew. Group 1 under the lead of IOW addresses the interaction of the cold upwelling water, which transports nutrients – especially phosphorus– upwards, and the development of cyanobacteria blooms.

The research aims at supporting a better forecast and management of those blooms, which are potentially harmful for animals and humans. Group 2, headed by ICBM, explores the impact of the CO2 enriched deep water of upwelling systems on carbon fluxes and primary productivity at the surface.

In particular, the researchers investigate the formation of the micro-layers within upwelling zones and their impact on the air-sea CO2 exchange by using highly developed sensors as well as in-situ sampling devices especially developed for this expedition. Group 3 under the lead of the Leibniz Institute for Tropospheric Research (TROPOS) also concentrates on the interface of sea and atmosphere:

The scientists analyze the effect of upwelling zones on the composition of aerosols as these airborne climate relevant particles are significantly influenced by what kind of micro-layers exists on the sea surface. Group 4 under IOW lead investigates the sources of organic mercury compounds in oxygen depleted deeper water layers. Furthermore, the group analyzes, how the upward transport affects these substances and if – by consequence – an air-sea gas exchange of volatile mercury compounds increases the biological availability of these pollutants.

Group 5, also headed by IOW, examines, how the energy turnover within zooplankton communities changes in response to varying food quality. Such variability can be caused by upwelling events as they significantly affect the composition of phytoplankton, on which the zooplankton feeds. Last but not least, IOW project group 6 is responsible for the data collection within various long-term monitoring programs. This includes the measurement in varying depths of temperature, salinity and the concentration of nutrients, oxygen, and chlorophyll as well as the survey of phyto- and zooplankton composition.

The METEOR’s track to the Eastern Gotland Basin and to the Gulf of Finland is in parts flexible as the occurrence of upwelling zones cannot be predicted in time and space. “We will be able to recognize the current position of an upwelling zone by our routine measurements on board as the key parameters of the cold water from deeper layers differ very recognizably from those of the surface water.

In addition, we will cooperate closely with our land-based IOW colleagues from the remote sensing team, who will constantly supply us with satellite information on the sea surface temperature and the occurrence of sudden cold spots, which typically indicate an upwelling event,” explains Günther Nausch. The METEOR cruise 117 will be concluded on August 17, 2015, in Rostock, where the scientific crew of this particular part of the expedition will disembark. Afterwards, three more cruise legs will lead the METEOR into the Atlantic with her final destination in the port of Walvis Bay/Namibia.

More information on the research vessel METEOR:

*Press and Public Relations at IOW:
Dr. Kristin Beck | Tel.: 0381 – 5197 135 |
Dr. Barbara Hentzsch | Tel.: 0381 – 5197 102 |

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. (

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>