Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold, hot or dry: Persistent weather extremes associated with decreased storm activity

11.12.2015

A decrease in storm activity over large parts of the US, Europe, Russia, and China is found to influence weather extremes – cold ones in winter, hot or dry ones in summer. This is now shown in a study by scientists from the Potsdam Institute for Climate Impact Research. The observed changes in storm activity are likely related to changes in other atmospheric dynamics like the jet stream – strong westerly winds circling the Northern hemisphere high up in the sky.

“Less or less severe storms in the mid-latitudes, this at first sight seems to be good news – but unfortunately it isn’t,” says lead-author Jascha Lehmann. “These storms have a moderating effect on land temperatures as they bring maritime air from the oceans to the continents and a lack of them can thus favor extreme temperatures.”


Winter in New York City (Photo: Thinkstock)

In the Northern Hemisphere mid-latitudes, much of the day-to-day weather variability is determined by the storm track regions located over the Atlantic and Pacific oceans. Here, weather systems, including storms, are generated and travel eastwards to the continents.

In winter, storms bring air from the relatively warm oceans to the continents and thus have a warming effect. In summer, the effect reverses with winds bringing relatively cool and moist air from the sea. The authors show that a lack of such weather systems can thus favor more persistent heat and drought events in summer, and cold spells in winter.

“This summer a severe drought in China’s northern bread basket region Liaoning threatened crop yields, while California has been experiencing a prolonged drought for no less than three consecutive years,” says Lehmann. Comprehensive analysis of satellite weather data shows that these are indeed regions where significant reductions in storm activity are detected during the rainy season.

In summer, storm activity calmed down over as much as 80 percent of the land area in the mid-latitudes. In winter the changes are more patchy, yet pronounced reductions are found over eastern US and large parts of Europe and Asia. This includes regions like New York and Chicago which suffered from record-breaking cold temperatures in recent winters.

These detected changes in mid-latitude storm tracks are likely linked to changes in the jet stream and planetary waves in the atmosphere. Such dynamical changes favor certain types of weather situations in some regions and others elsewhere.

“Regional changes are mostly due to natural variability but on top of that we see this pronounced overall weakening in summer storm activity,” says co-author Dim Coumou, ”This is also something projected by climate models under future emission scenarios. However, the data so far is not sufficient to say whether the storm activity changes are caused by climate change – this has to be investigated further.”

Although average summer storm activity decreases, the most intense winter storms are projected to increase in frequency under continued global warming. This could have severe implications for heavy rainfall events. Also, the most intense hurricanes and typhoons in the tropics are likely to increase under future warming because they’re driven by rising ocean surface temperatures.

In the Northern mid-latitudes, the main driver is the temperature difference between the warm equator and the cold Arctic; a difference that is shrinking because man-made warming is over-proportionate in the Arctic.

“Altogether our study highlights how sensitive regional weather conditions are to any changes in large-scale atmosphere dynamics,” says Coumou. “This can have serious impacts for people on the ground.”

Article: Lehmann, J., Coumou, D. (2015): The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Nature Scientific Reports. [DOI 10.1038/srep17491]


For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>