Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coexisting in a sea of competition

14.04.2015

Similar diatom species seek out nutrients in different ways

Diversity of life abounds on Earth, and there's no need to look any farther than the ocean's surface for proof. There are over 200,000 species of phytoplankton alone, and all of those species of microscopic marine plants that form the base of the marine food web need the same basic resources to grow--light and nutrients.


The high diversity of phytoplankton has puzzled biological oceanographers for a long time. There are over 200,000 species of of these tiny marine plants that use sunlight and nutrients to grow and reproduce at the ocean's surface.

Credit

Courtesy of Samantha DeCuollo,University of Rhode Island

A study by a team of scientists from the Woods Hole Oceanographic Institution (WHOI), University of Rhode Island (URI), and Columbia University, published April 13 in the Proceedings of the National Academy of Sciences reveals how species of diatoms--one of the several major types of marine phytoplankton--use resources in different ways to coexist in the same community.

"The diversity of phytoplankton has puzzled biological oceanographers for a long time," says Harriet Alexander, the study's lead author and a graduate student in the MIT-WHOI Joint Program in Oceanography. "Why are there so many different species coexisting in this relatively stable environment, when they're competing for the same resources? Why hasn't a top competitor forced others into extinction?"

To try and answer those questions, Alexander and her colleagues used a novel approach combining new molecular and analytic tools to highlight how similar species utilize resources differently--known as niche partitioning--in Narragansett Bay, R.I.

"The phytoplankton of Narragansett Bay, which is a dynamic estuarine system, have been investigated on a weekly basis since the 1950's, giving us great insight into long term patterns of change," says Tatiana Rynearson, a coauthor and the director of the Narragansett Bay Plankton Time Series at URI. "This study uses that time series, but takes it in an entirely new direction, providing insights into the inner lives of phytoplankton."

Working with water samples collected in conjunction with surveys for the Plankton Time Series from the R/V Cap'n Bert, the research team extracted genetic material called ribonucleic acid (RNA) from the plankton in the bay. RNA sequencing, which was done at the Columbia University Genome Center, allowed the researchers to use the genetic information to determine what organisms were present and what they were doing.

The annotation of these RNA sequences via "pattern matching" was facilitated by the Gordon and Betty Moore Foundation's Marine Microbial Eukaryote Transcriptome Sequencing Project, which has sequenced the genetic material of more than 300 marine species.

In conjunction with the sequencing analysis, the research team developed a new bioinformatic approach that uses data from nutrient amendment experiments to help interpret signals from the environment.

"By adding nitrogen, we can get an idea of what these organisms look like and how they behave when they have plenty of nitrogen," explains Alexander. "Then we would also do the converse, by adding everything that they could possibly want except nitrogen. Creating these extremes in nutrient environment enabled the identification of known and novel molecular markers of nutrient condition for these organisms."

Using these data the researchers observed two species of chain-forming diatoms--Skeletonema spp. and Thalassiosira rotula--coexisting in the same parcel of water, but doing fundamentally different things with available nutrients, specifically nitrogen and phosphorus.

"Skeletonema was the dominant player during our sampling and goes after inorganic nitrogen sources, like nitrate and nitrite. As the less dominant player, Thalassiosira, is doing a lot of work bringing in nitrogen from organic sources, such as amino acids," Alexander says.

"We have long suspected that even closely related phytoplankton must have ways of distinguishing their needs from that of their neighbors, for example using different forms phosphorus or nitrogen, but this has been hard to track in the environment, as most approaches are not species-specific," adds Alexander's advisor and coauthor on the study, Sonya Dyhrman, an associate professor in the Department of Earth and Environmental Sciences at Columbia University.

"Part of the challenge is that you would need to track species-specific patterns in resource utilization to compare one diatom to another," adds Dyhrman. "In this study, a new database that is part of the MMETSP was leveraged to identify species-specific signals, and then Harriet developed a way to normalize those signals to be able to compare quantitatively between species."

Much like human genome sequencing is expanding our understanding of medicine, microbial genomics gives us new insights into how marine organisms function in the ocean and how they are influenced by environmental factors such as climate. The tools developed in this study, point the way to further work that examines how diverse populations of diatoms and other phytoplankton will respond to changing conditions in the future ocean.

###

This research was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program, and funds from the National Science Foundation Environmental Genomics and Biological Oceanography Programs, and the Joint Genome Institute/Department of Energy Community Sequencing Program. A grant to the National Center for Genome Resources for the MMETSP was provided by the Gordon and Betty Moore Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Relations Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu 

WHOI Media Relations Office | EurekAlert!

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>