Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal marshes more resilient to sea-level rise than previously believed

18.12.2015

Increased plant productivity and soil generation help marshes adapt

Accelerating rates of sea-level rise linked to climate change pose a major threat to coastal marshes and the vital carbon capturing they perform. But a new Duke University study finds marshes may be more resilient than previously believed.


An aerial image with false colors shows marsh elevations in the Venice Lagoon.

Credit: Marco Marani, Duke University

The research, published this month in the Proceedings of the National Academy of Sciences, shows that the significant boost in marsh plant productivity associated with elevated levels of atmospheric carbon dioxide will allow marshes to trap more sediment and create more organic soil.

This, in turn, will result in increased rates of accretion that will allow marshes to keep up with rising sea levels and may increase the thresholds for marsh drowning by up to 60 percent.

Coastal marshes absorb and store large amounts of carbon dioxide from Earth's atmosphere; they help filter out pollution in coastal waters; provide habitat for wildlife; help protect coastlines from erosion and storm surge; and can store huge amounts of floodwater, reducing the threat of flooding in low-lying coastal areas.

"Essentially, we found it's a self-rising mechanism marshes use to build themselves up," said Marco Marani, professor of ecohydrology at Duke's Nicholas School of the Environment and Pratt School of Engineering. "As levels of atmospheric carbon dioxide increase, more CO2 gets taken in by marsh plants. This spurs higher rates of photosynthesis and biomass production, so the plants produce more sediment-trapping growth above ground and generate more organic soil below ground."

The result is that the extent of marsh loss is significantly reduced, even under high rates of sea-level rise.

The study suggests this so-called "CO2 fertilization effect" may also contribute to a stabilizing feedback in the climate system as increased biomass production and organic deposition in marshes sequester larger amounts of carbon dioxide.

But there's an important caveat.

"While elevated atmospheric CO2 levels may offset some of the threats facing marshes from sea-level rise, another equally serious threat to marsh survival -- sediment starvation -- will remain," said Katherine M. Ratliff, a PhD student at Duke's Nicholas School, who was lead author of the study.

"Suspended sediments play a fundamental role in marsh survival," she said. "As more dams are built and as land use and agricultural practices in coastal regions continue to rapidly change, we're seeing a sharp drop in inorganic sediment delivery to many coastal marshes worldwide. This decrease significantly undercuts the marshes' ability to build themselves up and keep pace with rising seas."

The new study finds that in sediment-poor marshes, the loss of area might range between 39 percent and 61 percent, even when the offsetting CO2 fertilization effect is accounted for, as the rate of relative sea-level rise increases beyond the initial threshold for marsh drowning.

To conduct their study, the researchers used a spatial model of marsh morphodynamics into which they incorporated recently published observations from field experiments on marsh vegetation response to varying levels of atmospheric carbon dioxide.

"While the effect of direct carbon dioxide fertilization has so far been neglected in marsh modeling, our research shows it is central in determining possible marsh survival under the foreseeable range of climatic changes," Marani said.

###

PhD student Anna E. Braswell co-authored the study with Ratliff and Marani.

Funding came from the National Science Foundation's Graduate Research Fellowship Program (#DGF1 1106401), and from Duke's Nicholas School of the Environment and Pratt School of Engineering.

CITATION: "Spatial Response of Coastal Marshes to Increased Atmospheric CO2," Katherine M. Ratliff, Anna E. Braswell, Marco Marani. Proceedings of the National Academy of Sciences Dec. 7, 2015. DOI: 10.1073/pnas.1516286112

Media Contact

Tim Lucas
tdlucas@duke.edu
919-613-8084

 @DukeU

http://www.duke.edu 

Tim Lucas | EurekAlert!

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>