Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal marshes more resilient to sea-level rise than previously believed

18.12.2015

Increased plant productivity and soil generation help marshes adapt

Accelerating rates of sea-level rise linked to climate change pose a major threat to coastal marshes and the vital carbon capturing they perform. But a new Duke University study finds marshes may be more resilient than previously believed.


An aerial image with false colors shows marsh elevations in the Venice Lagoon.

Credit: Marco Marani, Duke University

The research, published this month in the Proceedings of the National Academy of Sciences, shows that the significant boost in marsh plant productivity associated with elevated levels of atmospheric carbon dioxide will allow marshes to trap more sediment and create more organic soil.

This, in turn, will result in increased rates of accretion that will allow marshes to keep up with rising sea levels and may increase the thresholds for marsh drowning by up to 60 percent.

Coastal marshes absorb and store large amounts of carbon dioxide from Earth's atmosphere; they help filter out pollution in coastal waters; provide habitat for wildlife; help protect coastlines from erosion and storm surge; and can store huge amounts of floodwater, reducing the threat of flooding in low-lying coastal areas.

"Essentially, we found it's a self-rising mechanism marshes use to build themselves up," said Marco Marani, professor of ecohydrology at Duke's Nicholas School of the Environment and Pratt School of Engineering. "As levels of atmospheric carbon dioxide increase, more CO2 gets taken in by marsh plants. This spurs higher rates of photosynthesis and biomass production, so the plants produce more sediment-trapping growth above ground and generate more organic soil below ground."

The result is that the extent of marsh loss is significantly reduced, even under high rates of sea-level rise.

The study suggests this so-called "CO2 fertilization effect" may also contribute to a stabilizing feedback in the climate system as increased biomass production and organic deposition in marshes sequester larger amounts of carbon dioxide.

But there's an important caveat.

"While elevated atmospheric CO2 levels may offset some of the threats facing marshes from sea-level rise, another equally serious threat to marsh survival -- sediment starvation -- will remain," said Katherine M. Ratliff, a PhD student at Duke's Nicholas School, who was lead author of the study.

"Suspended sediments play a fundamental role in marsh survival," she said. "As more dams are built and as land use and agricultural practices in coastal regions continue to rapidly change, we're seeing a sharp drop in inorganic sediment delivery to many coastal marshes worldwide. This decrease significantly undercuts the marshes' ability to build themselves up and keep pace with rising seas."

The new study finds that in sediment-poor marshes, the loss of area might range between 39 percent and 61 percent, even when the offsetting CO2 fertilization effect is accounted for, as the rate of relative sea-level rise increases beyond the initial threshold for marsh drowning.

To conduct their study, the researchers used a spatial model of marsh morphodynamics into which they incorporated recently published observations from field experiments on marsh vegetation response to varying levels of atmospheric carbon dioxide.

"While the effect of direct carbon dioxide fertilization has so far been neglected in marsh modeling, our research shows it is central in determining possible marsh survival under the foreseeable range of climatic changes," Marani said.

###

PhD student Anna E. Braswell co-authored the study with Ratliff and Marani.

Funding came from the National Science Foundation's Graduate Research Fellowship Program (#DGF1 1106401), and from Duke's Nicholas School of the Environment and Pratt School of Engineering.

CITATION: "Spatial Response of Coastal Marshes to Increased Atmospheric CO2," Katherine M. Ratliff, Anna E. Braswell, Marco Marani. Proceedings of the National Academy of Sciences Dec. 7, 2015. DOI: 10.1073/pnas.1516286112

Media Contact

Tim Lucas
tdlucas@duke.edu
919-613-8084

 @DukeU

http://www.duke.edu 

Tim Lucas | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>