Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloudy with a chance of warming

10.12.2015

Clouds can increase warming in the changing Arctic region more than scientists expected, by delivering an unexpected double-whammy to the climate system, according to a new study by researchers at NOAA, the University of Colorado Boulder and colleagues.

"As the Arctic atmosphere warms and moistens, it becomes a better insulator. While we expected this to reduce the influence from clouds, which provide additional insulation, we find that clouds forming in the Arctic in these conditions appear to further warm the surface, especially in the fall and winter," said Christopher Cox, lead author of the new paper published today in Nature Communications.


Clouds are shown over the western edge of the Greenland Ice Sheet.

Photo by Matt Shupe/CIRES

Cox is a research scientist with the Cooperative Institute for Research in Environmental Sciences (CIRES), who works at NOAA's Earth System Research Laboratory in Boulder, Colorado.

Clouds are a complicated character in the climate change story: They can cool the planet's surface by reflecting sunlight, and they can insulate it and keep it warm.

"To understand why and where Earth is warming, you have to understand the overall effect of clouds," Cox said.

Head north to the Arctic, and clouds' impact on climate is particularly difficult to understand, he said. The amount and manner in which clouds warm the surface is determined by an intricate dance between moisture (relative humidity), temperatures and the properties of the clouds--and that dance "is different in the Arctic, where the air is colder and drier than at lower latitudes," Cox said.

To nail down the overarching influence of Arctic clouds on temperatures, he and colleagues from CIRES, NOAA, Washington State University, Idaho and Chile analyzed measurements from three science research stations in the far north: Barrow, Alaska; Eureka, Canada; and Summit, Greenland.

They assessed things like temperature, relative humidity, and a measure of the cloud insulating properties ("the downwelling infrared cloud radiative effect"), and they looked at how those factors interacted with one another (in different parts of the infrared spectrum).

Previous work suggested that as the atmosphere itself warms and becomes more moist it becomes a better insulator, so the clouds themselves have a diminishing contribution to warming. This is likely true on a global scale: It's as if a person is already warm under a blanket and adding another blanket has little additional effect.

However, this team found a different behavior when temperature and humidity increase in the cold Arctic. There, clouds can retain their ability to warm the surface, and actually appear to be amplifying regional warming. In this cold, dry region, adding a second "blanket" can, in fact, make it even warmer.

The effect--strongest in autumn and winter--is related to the way that temperature and moisture are changing relative to each other in the region, according to the new analysis, which relied on climate modeling as well as observations. Because there is little sunlight in the Arctic in autumn and winter, the insulating properties of clouds far outweigh their shading properties, making this result all the more important, said co-author Matthew Shupe, also a CIRES researcher who works at NOAA.

He and his colleagues said their findings call for better monitoring of changes in the Arctic atmosphere, including temperature and moisture levels as well as cloud properties, and continued work to improve the representation of clouds in computer models designed to understand the rapidly evolving Arctic region.

###

Authors of "Humidity trends imply increased sensitivity to clouds in a warming Arctic" in Nature Communications are Christopher J. Cox (CIRES and NOAA), Von P. Walden (Washington State University), Penny M. Rowe (University of Idaho and Universidad de Santiago de Chile), and Matthew D. Shupe (CIRES and NOAA). This work was supported by the NOAA Climate Program Office (CPO) Arctic Research Program, the CIRES Visiting Fellows Program, the National Science Foundation (NSF), the Universidad de Santiago de Chile/FONDECYT/DICYT, and the US DOE Atmospheric Radiation Measurement (ARM) Program.

CIRES is a partnership of NOAA and CU-Boulder.

Media Contact

Christopher Cox
303-497-4518

 @cubouldernews

http://www.colorado.edu/news 

Christopher Cox | EurekAlert!

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>