Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds, like blankets, trap heat and are melting the Greenland Ice Sheet

13.01.2016

The Greenland Ice Sheet is the second largest ice sheet in the world and it's melting rapidly, likely driving almost a third of global sea level rise.

A new study shows clouds are playing a larger role in that process than scientists previously believed.


A new study shows clouds are playing a larger role in heating the Greenland Ice Sheet than scientists previously believed, raising its temperature by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Credit: Hannes Grobe

"Over the next 80 years, we could be dealing with another foot of sea level rise around the world," says Tristan L'Ecuyer, professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison and co-author of the study. "Parts of Miami and New York City are less than two feet above sea level; another foot of sea level rise and suddenly you have water in the city."

The study, published today (Jan. 12, 2016) in Nature Communications and led by the University of Leuven in Belgium, shows that clouds are raising the temperature of the Greenland Ice Sheet by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Numerous statements in the Nobel Peace Prize-winning 2007 Intergovernmental Panel on Climate Change report address the need to better account for clouds in climate models, L'Ecuyer says. Arctic clouds are no exception, especially since climate models have not kept pace with the rate of melting actually observed on the Greenland Ice Sheet.

"With climate change at the back of our minds, and the disastrous consequences of a global sea level rise, we need to understand these processes to make more reliable projections for the future," says Kristof Van Tricht, the University of Leuven graduate student who led the study. "Clouds are more important for that purpose than we used to think."

But in order to better understand them, the right technology needed to be in place.

"Within the last 10 years, NASA launched two satellites that have just completely changed our view of what clouds look like around the planet," says L'Ecuyer, who is affiliated with the UW-Madison Space Science and Engineering Center, where satellite meteorology was born. "Once you know what the clouds look like, you know how much sunlight they're going to reflect and how much heat from Earth's surface they're going to keep in."

When it comes to heat, clouds essentially behave in two ways: They either cool the Earth's surface by reflecting sunlight back into space, or, like a thick blanket, they trap heat at the surface -- the greenhouse effect of clouds. On Greenland, which is covered in bright, light-reflecting snow, clouds primarily act to trap heat.

Using the two satellites -- CloudSat and CALIPSO -- L'Ecuyer was able to take "X-ray images" of Greenland's clouds from space between 2007 and 2010 and determine their structure, how high they were in the atmosphere, their vertical thickness, and their composition (ice or liquid).

The Belgian team combined this data with ground-based observations, snow model simulations and climate model data to map the net effect of clouds. They learned that cloud cover prevents the ice that melts in the sunlight of day from refreezing at night.

"A snowpack is like a frozen sponge that melts during the day," says Van Tricht, who spent six weeks in Madison last year working with L'Ecuyer. "At night, clear skies make a large amount of meltwater in the sponge refreeze. When the sky is overcast, by contrast, the temperature remains too high and only some of the water refreezes. As a result, the sponge is saturated more quickly and excess meltwater drains away."

Researchers already know that while clouds can change the climate, the climate can also change clouds, a phenomenon known as cloud-climate feedback. L'Ecuyer is optimistic that the study -- a good example of how satellites are helping us solve the complicated cloud-climate feedback problem -- will improve future climate models, to help scientists and policymakers across the world adapt to climate change.

With a background in physics, L'Ecuyer is driven to study clouds by a desire to better understand how people and society are affected by the natural world. "Many of the countries most susceptible to sea level rise tend to be the poorest; they don't have the money to deal with it," he says. "This is something we have to get right if we want to predict the future."

###

CONTACT: Tristan L'Ecuyer, 608-890-2107, tlecuyer@wisc.edu

Kelly April Tyrrell, kelly.tyrrell@wisc.edu, 608-262-9772

Media Contact

Tristan L'Ecuyer
tlecuyer@wisc.edu
608-890-2107

 @UWMadScience

http://www.wisc.edu 

Tristan L'Ecuyer | EurekAlert!

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>