Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds, like blankets, trap heat and are melting the Greenland Ice Sheet

13.01.2016

The Greenland Ice Sheet is the second largest ice sheet in the world and it's melting rapidly, likely driving almost a third of global sea level rise.

A new study shows clouds are playing a larger role in that process than scientists previously believed.


A new study shows clouds are playing a larger role in heating the Greenland Ice Sheet than scientists previously believed, raising its temperature by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Credit: Hannes Grobe

"Over the next 80 years, we could be dealing with another foot of sea level rise around the world," says Tristan L'Ecuyer, professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison and co-author of the study. "Parts of Miami and New York City are less than two feet above sea level; another foot of sea level rise and suddenly you have water in the city."

The study, published today (Jan. 12, 2016) in Nature Communications and led by the University of Leuven in Belgium, shows that clouds are raising the temperature of the Greenland Ice Sheet by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Numerous statements in the Nobel Peace Prize-winning 2007 Intergovernmental Panel on Climate Change report address the need to better account for clouds in climate models, L'Ecuyer says. Arctic clouds are no exception, especially since climate models have not kept pace with the rate of melting actually observed on the Greenland Ice Sheet.

"With climate change at the back of our minds, and the disastrous consequences of a global sea level rise, we need to understand these processes to make more reliable projections for the future," says Kristof Van Tricht, the University of Leuven graduate student who led the study. "Clouds are more important for that purpose than we used to think."

But in order to better understand them, the right technology needed to be in place.

"Within the last 10 years, NASA launched two satellites that have just completely changed our view of what clouds look like around the planet," says L'Ecuyer, who is affiliated with the UW-Madison Space Science and Engineering Center, where satellite meteorology was born. "Once you know what the clouds look like, you know how much sunlight they're going to reflect and how much heat from Earth's surface they're going to keep in."

When it comes to heat, clouds essentially behave in two ways: They either cool the Earth's surface by reflecting sunlight back into space, or, like a thick blanket, they trap heat at the surface -- the greenhouse effect of clouds. On Greenland, which is covered in bright, light-reflecting snow, clouds primarily act to trap heat.

Using the two satellites -- CloudSat and CALIPSO -- L'Ecuyer was able to take "X-ray images" of Greenland's clouds from space between 2007 and 2010 and determine their structure, how high they were in the atmosphere, their vertical thickness, and their composition (ice or liquid).

The Belgian team combined this data with ground-based observations, snow model simulations and climate model data to map the net effect of clouds. They learned that cloud cover prevents the ice that melts in the sunlight of day from refreezing at night.

"A snowpack is like a frozen sponge that melts during the day," says Van Tricht, who spent six weeks in Madison last year working with L'Ecuyer. "At night, clear skies make a large amount of meltwater in the sponge refreeze. When the sky is overcast, by contrast, the temperature remains too high and only some of the water refreezes. As a result, the sponge is saturated more quickly and excess meltwater drains away."

Researchers already know that while clouds can change the climate, the climate can also change clouds, a phenomenon known as cloud-climate feedback. L'Ecuyer is optimistic that the study -- a good example of how satellites are helping us solve the complicated cloud-climate feedback problem -- will improve future climate models, to help scientists and policymakers across the world adapt to climate change.

With a background in physics, L'Ecuyer is driven to study clouds by a desire to better understand how people and society are affected by the natural world. "Many of the countries most susceptible to sea level rise tend to be the poorest; they don't have the money to deal with it," he says. "This is something we have to get right if we want to predict the future."

###

CONTACT: Tristan L'Ecuyer, 608-890-2107, tlecuyer@wisc.edu

Kelly April Tyrrell, kelly.tyrrell@wisc.edu, 608-262-9772

Media Contact

Tristan L'Ecuyer
tlecuyer@wisc.edu
608-890-2107

 @UWMadScience

http://www.wisc.edu 

Tristan L'Ecuyer | EurekAlert!

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>