Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds, like blankets, trap heat and are melting the Greenland Ice Sheet

13.01.2016

The Greenland Ice Sheet is the second largest ice sheet in the world and it's melting rapidly, likely driving almost a third of global sea level rise.

A new study shows clouds are playing a larger role in that process than scientists previously believed.


A new study shows clouds are playing a larger role in heating the Greenland Ice Sheet than scientists previously believed, raising its temperature by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Credit: Hannes Grobe

"Over the next 80 years, we could be dealing with another foot of sea level rise around the world," says Tristan L'Ecuyer, professor in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin-Madison and co-author of the study. "Parts of Miami and New York City are less than two feet above sea level; another foot of sea level rise and suddenly you have water in the city."

The study, published today (Jan. 12, 2016) in Nature Communications and led by the University of Leuven in Belgium, shows that clouds are raising the temperature of the Greenland Ice Sheet by 2 to 3 degrees compared to cloudless skies and accounting for as much as 30 percent of the ice sheet melt.

Numerous statements in the Nobel Peace Prize-winning 2007 Intergovernmental Panel on Climate Change report address the need to better account for clouds in climate models, L'Ecuyer says. Arctic clouds are no exception, especially since climate models have not kept pace with the rate of melting actually observed on the Greenland Ice Sheet.

"With climate change at the back of our minds, and the disastrous consequences of a global sea level rise, we need to understand these processes to make more reliable projections for the future," says Kristof Van Tricht, the University of Leuven graduate student who led the study. "Clouds are more important for that purpose than we used to think."

But in order to better understand them, the right technology needed to be in place.

"Within the last 10 years, NASA launched two satellites that have just completely changed our view of what clouds look like around the planet," says L'Ecuyer, who is affiliated with the UW-Madison Space Science and Engineering Center, where satellite meteorology was born. "Once you know what the clouds look like, you know how much sunlight they're going to reflect and how much heat from Earth's surface they're going to keep in."

When it comes to heat, clouds essentially behave in two ways: They either cool the Earth's surface by reflecting sunlight back into space, or, like a thick blanket, they trap heat at the surface -- the greenhouse effect of clouds. On Greenland, which is covered in bright, light-reflecting snow, clouds primarily act to trap heat.

Using the two satellites -- CloudSat and CALIPSO -- L'Ecuyer was able to take "X-ray images" of Greenland's clouds from space between 2007 and 2010 and determine their structure, how high they were in the atmosphere, their vertical thickness, and their composition (ice or liquid).

The Belgian team combined this data with ground-based observations, snow model simulations and climate model data to map the net effect of clouds. They learned that cloud cover prevents the ice that melts in the sunlight of day from refreezing at night.

"A snowpack is like a frozen sponge that melts during the day," says Van Tricht, who spent six weeks in Madison last year working with L'Ecuyer. "At night, clear skies make a large amount of meltwater in the sponge refreeze. When the sky is overcast, by contrast, the temperature remains too high and only some of the water refreezes. As a result, the sponge is saturated more quickly and excess meltwater drains away."

Researchers already know that while clouds can change the climate, the climate can also change clouds, a phenomenon known as cloud-climate feedback. L'Ecuyer is optimistic that the study -- a good example of how satellites are helping us solve the complicated cloud-climate feedback problem -- will improve future climate models, to help scientists and policymakers across the world adapt to climate change.

With a background in physics, L'Ecuyer is driven to study clouds by a desire to better understand how people and society are affected by the natural world. "Many of the countries most susceptible to sea level rise tend to be the poorest; they don't have the money to deal with it," he says. "This is something we have to get right if we want to predict the future."

###

CONTACT: Tristan L'Ecuyer, 608-890-2107, tlecuyer@wisc.edu

Kelly April Tyrrell, kelly.tyrrell@wisc.edu, 608-262-9772

Media Contact

Tristan L'Ecuyer
tlecuyer@wisc.edu
608-890-2107

 @UWMadScience

http://www.wisc.edu 

Tristan L'Ecuyer | EurekAlert!

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>