Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds and climate in the pre-industrial age

30.05.2016

Aerosol particles generated by human activity counteract the warming of the earth's atmosphere by greenhouse gases. However, this effect might be smaller than first thought, as many particles were already generated from tree emissions in pre-industrial times. This was the finding of a simulation carried out as part of the international CLOUD experiment, in which researchers from the Goethe University played a major role. The results are published in the form of three papers in the renowned journals "Science" and "Nature".

"These results are the most important so far by the CLOUD experiment at CERN", said CLOUD spokesperson Jasper Kirkby, Honorary Professor at the Goethe University. "When the nucleation and growth of pure biogenic aerosol particles is included in climate models, it should sharpen our understanding of the impact of human activities on clouds and climate."


Mario Simon (from left zu right), Martin Heinritzi, Andreas Kürten, Andrea Wagner und Joachim Curtius mit dem von ihnen entwickelten Massenspektrometer.

Uwe Dettmar

Professor Joachim Curtius from the Institute for Atmospheric and Environmental Sciences at the Goethe University added: "We believe that the newly discovered process will mean that we will have to reassess cloud formation in earlier times, as there must have been more particles present than we had previously assumed. There would therefore be less of a difference between the situation then and now than previously thought."

The CLOUD experiment is looking at how new aerosol particles form in the atmosphere and their effect on climate. As the aerosol particles increase, as is the case due to human activities, more sunlight is reflected and more cloud droplets form, making the clouds brighter.

In order to estimate the cooling effect caused by anthropogenic influences, it is necessary to know the quantities of aerosols present in the pre-industrial age. As direct measurement is not an option, the effects are simulated through reliable laboratory tests such as the CLOUD experiment, and then applied to climate modelling.

In pre-industrial times, the organic compounds emitted by trees were a major contributing factor in the formation of aerosols. The researchers examined alpha-pinene, a substance that gives pine forests their characteristic pleasant smell. They are among the most important biogenic emissions. Alpha-pinene is rapidly oxidised on exposure to ozone and the ensuing reaction chains create some extremely low-volatility substances. However, these only occur in very small concentrations of around one molecule per one trillion air molecules.

The CLOUD experiments show that these extremely low-volatility organic compounds are very efficient at forming new particles. This process occurs under atmospheric conditions, even in the absence of sulphuric acid. It had been assumed that sulphuric acid was virtually always involved in particle formation in the atmosphere. The main source of sulphuric acid in the atmosphere is sulphur dioxide, which is generated by the burning of fossil fuels.

Furthermore, the researchers discovered that ions from cosmic rays strongly enhance the production rate of the organic particles - by a factor of 10-100 compared to particle formation without ions, provided the concentrations of the particle-forming gases are low.

"Furthermore, our studies show that these low-volatility organic substances also dominate particle growth in unpolluted environments across the entire size range from clusters of just a few molecules all the way up to sizes of 50-100 nm, where the particles are large enough to be able to seed cloud droplets", explained Joachim Curtius. The growth rates accelerate as the particles increase in size, because more and more oxidation products, also those of higher volatility, are able to condense on the expanding particles. This process is described in quantitative terms with a condensation model for the various organic substances.

Why is this knowledge important for our understanding of the climate? This may well be a very important mechanism, because it is so efficient in terms of the formation of organic particles under natural conditions. As soon as the particles have formed, they grow through the condensation of other similar oxygenated organic compounds. The rapid growth of the newly-formed particles means that they lose a smaller percentage through collisions with pre-existing large particles. As a result more particles grow to sizes that have the potential to seed clouds and influence the climate.

Another paper that appears in the same issue of "Science" reports on observations from the observatory on the Jungfraujoch, which detected pure organic nucleation in the free troposphere. This proves the relevance of the CLOUD laboratory experiments for the atmosphere.

Weitere Informationen:

https://cds.cern.ch/record/2155289
https://cds.cern.ch/record/2154271

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>