Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing the Case on an Ancient Archeological Mystery

29.04.2015

Solving 4,000-year-old mystery helps WSU archeologist find useful resource for a warmer future

Climate change may be responsible for the abrupt collapse of civilization on the fringes of the Tibetan Plateau around 2000 B.C.


Barley cultivation in Jiuzhaigou National Park hasn't changed much in nearly 2,000 years. The park is located in the Min Shan mountain range, Northern Sichuan in South Western China.

Credit: Washington State University

WSU archaeologist Jade D'Alpoim Guedes and an international team of researchers found that cooling global temperatures at the end of the Holocene Climatic Optimum, a 4,000 year period of warm weather, would have made it impossible for ancient people on the Tibetan Plateau to cultivate millet, their primary food source.

Guedes' team's research recently was published online in the Proceedings of the National Academy of Sciences. Her results provide the first convincing explanation for why the area's original inhabitants either left or so abruptly changed their lifestyles.

They also help explain the success of farmers who practiced wheat and barley agriculture in the region 300 years later.

Unlike millet, wheat and barley have high frost tolerance and a low heat requirement, making them ideally suited for the high altitudes and cold weather of eastern Tibet. Guedes argues this made the two crops an important facet of subsistence immediately after their introduction around 1700 B.C.

"Wheat and barley came in at the opportune moment, right when millets were losing their ability to be grown on the Tibetan Plateau," Guedes said. "It was a really exciting pattern to notice. The introduction of wheat and barley really enabled Tibetan culture to take the form it has today, and their unique growth patterns may have played a crucial rule in the spread of these crops as staples across the vast region of East Asia."

One offshoot of the research: The ancient millet seeds that fell out of cultivation on the Tibetan Plateau as the climate got colder might soon be useful again as the climate warms up.

"Right now, these millets have almost become forgotten crops," Guedes said. "But due to their heat tolerance and high nutritional value, they may be once again be useful resources for a warmer future."

An archaeological enigma

At Ashaonao, Haimenkou, and other archeological sites in the Tibetan highlands, researchers for years had noticed a growing trend. An abundance of ancient wheat and barley seeds found at the sites suggested the crops rapidly replaced millet as the staple food source of the region during the second millennium BCE.

The findings were puzzling considering that the scientific consensus of the time was the region's climate would have actually favored millet, due to its shorter growing season, over wheat or barley.

The conundrum intrigued Guedes so she dove into the agronomy literature to investigate. She found agronomists tended to use a different measurement than archaeologists to determine whether crops can grow in cold, high altitude environments like the Tibetan Plateau. They used total growing degree days or the accumulated amount of heat plants need over their lifetime rather than the length of a growing season.

"My colleagues and I created a new model based off what we found in the literature," Guedes said. "It revealed that global cooling would have made it impossible to grow millet in the Eastern Tibetan Highlands at this time but would have been amenable to growing wheat and barley. Our work turned over previous assumptions and explained why millet is no longer a staple crop in the area after 2000 BCE."

Guedes' work points to climate cooling as the culprit behind the collapse of early civilization on the Tibetan Plateau. Ironically, the region is today one of the areas experiencing the most rapid climate warming on the planet. There are some areas in the southeastern plateau where temperatures are 6 degrees Celsius higher than they were 200 years ago.

Rapid temperature increase is making it difficult for the region's inhabitants to raise and breed yaks, a staple form of subsistence in the central Asian highlands, and grow cold weather crops, once again endangering their survival.

"So now we have a complete reversal and climate warming is having a big impact on the livelihood of smaller farmers on the Tibetan Plateau," Guedes said.

Media Contact

Jade D'Alpoim Guedes
jade.dalpoimguedes@wsu.edu
509-335-2304

 @WSUNews

http://www.wsu.edu 

Jade D'Alpoim Guedes | EurekAlert!

Further reports about: Mystery Tibetan barley climate warming crops food source growing season temperatures

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>