Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017

Even old trees absorb large amounts of carbon, removing CO2 (carbon dioxide) from the atmosphere. This was recently proven for the first time using trees from the rainforests in Surinam, as Professor Michael Köhl from Universität Hamburg’s Center for Earth System Research and Sustainability (CEN) reports in an article for the journal PLOS ONE. This confirms older trees’ valuable contribution to climate protection.

Michael Köhl and his team were able to demonstrate that trees absorb between 39 and 50 percent of the total carbon for their lifetime in the last quarter of their life – in contrast to the commonly held belief that older trees were less effective in this regard. Though they permanently store carbon (C) in their trunks and limbs, it remained unclear whether or not they could still absorb any meaningful amounts of new C.


Michael Köhl in the forests of Suriname

Photo: UHH/CEN/M. Köhl

The team investigated 61 trees, from three species and varying in age from 83 to 255 years. All of the trees surveyed were from an untouched section of rainforest in Surinam that had been earmarked for clearing by the local government.

Disc segments of their mighty trunks were shipped to Hamburg for dating. Based on the growth rings, Köhl’s colleague Dr Neda Lotfiomran was able to measure their annual growth. Using the height and diameter, Köhl then calculated the net weight, i.e., the biomass, of each tree – half of which is carbon. This information, together with the tree rings, makes it possible to determine how much C a given tree absorbed, and at which age.

So, to sum up: Tropical trees remain highly productive, even in their ‘golden years.’ As Köhl explains, “Our findings can also be transferred to European trees, despite the major differences between the forests.” The new study clearly shows that, in the tropics, each tree grows in a highly individual way. Growth and size depend less on age, and far more on random factors and favorable conditions.

Some trees spend years as plantlets in the dark zone near the ground, waiting for their chance. Then a neighboring tree falls, letting the sun shine in. When that happens, these fledgling trees seize the opportunity, growing quickly and securing their own place in the sun roughly 40 meters above the ground.

Europe, in contrast, is almost exclusively home to managed forests, many of which are monocultures. In such forests, all plants are roughly the same size – and, given the competition for sunlight and nutrients – are more or less equally unproductive in terms of absorbing C. When they are felled, their carbon remains stored, e.g. in wooden furniture. This creates new space for young trees, which also break down and absorb carbon – which is essentially a climate-friendly cycle.

Nevertheless, with regard to species diversity, it can make good sense to allow managed forests to revert back into natural ones. Yet efforts to do so often meet with resistance. “Those who oppose such plans often claim they violate climate protection. But if we apply our findings to European forests, we can see that this argument has no real basis,” says Köhl – since in our virgin mixed forests, too, which are home to old and young trees alike, trees can continue to break down atmospheric CO2 throughout their lives.

Article: Köhl M, Neupane PR, Lotfiomran N (2017) The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS ONE 12(8): e0181187. https://doi.org/10.1371/journal.pone.0181187

Weitere Informationen:

http://www.uni-hamburg.de/en/newsroom/presse/2017/pm63.html

Birgit Kruse | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>