Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change could leave Pacific Northwest amphibians high and dry

07.09.2015

Far above the wildfires raging in Washington's forests, a less noticeable consequence of this dry year is taking place in mountain ponds. The minimal snowpack and long summer drought that have left the Pacific Northwest lowlands parched also affect the region's amphibians due to loss of mountain pond habitat.

According to a new paper published Sept. 2 in the open-access journal PLOS ONE, this summer's severe conditions may be the new normal within just a few decades.


To develop the model, the team collected data for 121 wetland sites in Olympic National Park, Mount Rainier National Park and North Cascades National Park. Researchers monitored each site several times during the summer and fall of 2012.

Credit: Maureen Ryan/University of Washington

"This year is an analog for the 2070s in terms of the conditions of the ponds in response to climate," said Se-Yeun Lee, research scientist at University of Washington's Climate Impacts Group and one of the lead authors of the study.

Current conditions provide a preview of how that will play out.

"We've seen that the lack of winter snowpack and high summer temperatures have resulted in massive breeding failures and the death of some adult frogs," said co-author Wendy Palen, an associate professor at Canada's Simon Fraser University who has for many years studied mountain amphibians in the Pacific Northwest. "More years like 2015 do not bode well for the frogs."

Mountain ponds are oases in the otherwise harsh alpine environment. Brilliant green patches amid the rocks and heather, the ponds are breeding grounds for Cascades frogs, toads, newts and several other salamanders, and watering holes for species ranging from shrews to mountain lions. They are also the cafeterias of the alpine for birds, snakes and mammals that feed on the invertebrates and amphibians that breed in high-altitude ponds.

The authors developed a new model that forecasts changes to four different types of these ecosystems: ephemeral, intermediate, perennial and permanent wetlands. Results showed that climate-induced reductions in snowpack, increased evaporation rates, longer summer droughts and other factors will likely lead to the loss or rapid drying of many of these small but ecologically important wetlands.

According to the study, more than half of the intermediate wetlands are projected to convert to fast-drying ephemeral wetlands by the year 2080. These most vulnerable ponds are the same ones that now provide the best habitat for frogs and salamanders.

At risk are unique species such as the Cascades frog, which is currently being evaluated for listing under the Endangered Species Act. Found only at high elevations in Washington, Oregon and California, Cascades frogs can live for more than 20 years and can survive under tens of feet of snow. During the mating season, just after ponds thaw, the males make chuckling sounds to attract females.

"They are the natural jesters of the alpine, incredibly tough but incredibly funny and charismatic," said Maureen Ryan, the other lead author, a former UW postdoctoral researcher who is now a senior scientist with Conservation Science Partners.

The team adapted methods developed for forecasting the effects of climate change on mountain streams. Wetlands usually receive little attention since they are smaller and often out of sight. Yet despite their hidden nature, ponds and wetlands are globally important ecosystems that help store water and carbon, filter pollution, convert nutrients and provide food and habitat to a huge range of migratory and resident species. Their sheer numbers -- in the tens of thousands across the Pacific Northwest mountain ranges -- make them ecologically significant.

"It's hard to truly quantify the effects of losing these ponds because they provide so many services and resources to so many species, including us," Ryan said. "Many people have predicted that they are especially vulnerable to climate change. Our study shows that these concerns are warranted."

Land managers can use the study's maps to prepare for climate change. For example, Ryan and co-authors are working with North Cascades National Park, where park biologists are using the wetland projections to evaluate and update priorities for managing introduced fish and restoring natural alpine lake habitat.

###

Other co-authors are professor Joshua Lawler and doctoral student Meghan Halabisky, both in the UW's School of Environmental and Forest Sciences, and Alan Hamlet at the University of Notre Dame. All co-authors are members of a multi-institutional group studying wetlands adaptation and conservation in the face of climate change that produced a report for the Northwest Climate Science Center and a research brief for Mount Rainier National Park.

The new study was funded by the Department of the Interior's Northwest Climate Science Center, the David H. Smith Conservation Research Fellowship Program, and the U.S. Fish and Wildlife Service's Pacific Northwest Landscape Conservation Cooperative.

For more information, contact Lee at 206-616-5347 or leesy@uw.edu or Ryan at 360-685-3640 or moryan@uw.edu.

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>