Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change could leave Pacific Northwest amphibians high and dry

07.09.2015

Far above the wildfires raging in Washington's forests, a less noticeable consequence of this dry year is taking place in mountain ponds. The minimal snowpack and long summer drought that have left the Pacific Northwest lowlands parched also affect the region's amphibians due to loss of mountain pond habitat.

According to a new paper published Sept. 2 in the open-access journal PLOS ONE, this summer's severe conditions may be the new normal within just a few decades.


To develop the model, the team collected data for 121 wetland sites in Olympic National Park, Mount Rainier National Park and North Cascades National Park. Researchers monitored each site several times during the summer and fall of 2012.

Credit: Maureen Ryan/University of Washington

"This year is an analog for the 2070s in terms of the conditions of the ponds in response to climate," said Se-Yeun Lee, research scientist at University of Washington's Climate Impacts Group and one of the lead authors of the study.

Current conditions provide a preview of how that will play out.

"We've seen that the lack of winter snowpack and high summer temperatures have resulted in massive breeding failures and the death of some adult frogs," said co-author Wendy Palen, an associate professor at Canada's Simon Fraser University who has for many years studied mountain amphibians in the Pacific Northwest. "More years like 2015 do not bode well for the frogs."

Mountain ponds are oases in the otherwise harsh alpine environment. Brilliant green patches amid the rocks and heather, the ponds are breeding grounds for Cascades frogs, toads, newts and several other salamanders, and watering holes for species ranging from shrews to mountain lions. They are also the cafeterias of the alpine for birds, snakes and mammals that feed on the invertebrates and amphibians that breed in high-altitude ponds.

The authors developed a new model that forecasts changes to four different types of these ecosystems: ephemeral, intermediate, perennial and permanent wetlands. Results showed that climate-induced reductions in snowpack, increased evaporation rates, longer summer droughts and other factors will likely lead to the loss or rapid drying of many of these small but ecologically important wetlands.

According to the study, more than half of the intermediate wetlands are projected to convert to fast-drying ephemeral wetlands by the year 2080. These most vulnerable ponds are the same ones that now provide the best habitat for frogs and salamanders.

At risk are unique species such as the Cascades frog, which is currently being evaluated for listing under the Endangered Species Act. Found only at high elevations in Washington, Oregon and California, Cascades frogs can live for more than 20 years and can survive under tens of feet of snow. During the mating season, just after ponds thaw, the males make chuckling sounds to attract females.

"They are the natural jesters of the alpine, incredibly tough but incredibly funny and charismatic," said Maureen Ryan, the other lead author, a former UW postdoctoral researcher who is now a senior scientist with Conservation Science Partners.

The team adapted methods developed for forecasting the effects of climate change on mountain streams. Wetlands usually receive little attention since they are smaller and often out of sight. Yet despite their hidden nature, ponds and wetlands are globally important ecosystems that help store water and carbon, filter pollution, convert nutrients and provide food and habitat to a huge range of migratory and resident species. Their sheer numbers -- in the tens of thousands across the Pacific Northwest mountain ranges -- make them ecologically significant.

"It's hard to truly quantify the effects of losing these ponds because they provide so many services and resources to so many species, including us," Ryan said. "Many people have predicted that they are especially vulnerable to climate change. Our study shows that these concerns are warranted."

Land managers can use the study's maps to prepare for climate change. For example, Ryan and co-authors are working with North Cascades National Park, where park biologists are using the wetland projections to evaluate and update priorities for managing introduced fish and restoring natural alpine lake habitat.

###

Other co-authors are professor Joshua Lawler and doctoral student Meghan Halabisky, both in the UW's School of Environmental and Forest Sciences, and Alan Hamlet at the University of Notre Dame. All co-authors are members of a multi-institutional group studying wetlands adaptation and conservation in the face of climate change that produced a report for the Northwest Climate Science Center and a research brief for Mount Rainier National Park.

The new study was funded by the Department of the Interior's Northwest Climate Science Center, the David H. Smith Conservation Research Fellowship Program, and the U.S. Fish and Wildlife Service's Pacific Northwest Landscape Conservation Cooperative.

For more information, contact Lee at 206-616-5347 or leesy@uw.edu or Ryan at 360-685-3640 or moryan@uw.edu.

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>