Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ChemCam findings hint at oxygen-rich past on Mars

28.06.2016

Curiosity rover's discovery of manganese oxide points to a more Earth-like planet

The discovery of manganese oxides in Martian rocks might tell us that the Red Planet was once more Earth-like than previously believed. A new paper in Geophysical Research Letters reveals that NASA's Curiosity rover observed high levels of manganese oxides in Martian rocks, which could indicate that higher levels of atmospheric oxygen once existed on our neighboring planet. This hint of more oxygen in Mars' early atmosphere adds to other Curiosity findings--such as evidence of ancient lakes--revealing how Earth-like our neighboring planet once was.


The Curiosity rover examines the Kimberley formation in Gale crater, Mars. In front of the rover are two holes from the rover's sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat features are erosion-resistant fracture fills that are composed of manganese oxides, which require abundant liquid water and strongly oxidizing conditions to form. The discovery of these materials suggests that the Martian atmosphere might once have contained higher abundances of free oxygen than in the present day.

Credit: MSSS/JPL/NASA (PIA18390)

"The only ways on Earth that we know how to make these manganese materials involve atmospheric oxygen or microbes," said Nina Lanza, a planetary scientist at Los Alamos National Laboratory and lead author on the study published in the American Geophysical Union's journal. "Now we're seeing manganese-oxides on Mars and wondering how the heck these could have formed."

Lanza uses the Los Alamos-developed ChemCam instrument that sits atop Curiosity to "zap" rocks on Mars and analyze their chemical make-up. This work stems from Los Alamos National Laboratory's experience building and operating more than 500 spacecraft instruments for national defense, giving the Laboratory the expertise needed to develop discovery-driven instruments like ChemCam. In less than four years since landing on Mars, ChemCam has analyzed roughly 1,500 rock and soil samples.

Microbes seem a far-fetched explanation for the manganese oxides at this point, said Lanza, but the idea that the Martian atmosphere contained more oxygen in the past than it does now seems possible. "These high-manganese materials can't form without lots of liquid water and strongly oxidizing conditions," said Lanza "Here on Earth, we had lots of water but no widespread deposits of manganese oxides until after the oxygen levels in our atmosphere rose due to photosynthesizing microbes."

In the Earth's geological record, the appearance of high concentrations of manganese is an important marker of a major shift in our atmosphere's composition, from relatively low oxygen abundances to the oxygen-rich atmosphere we see today. The presence of the same types of materials on Mars suggests that something similar happened there. If that's the case, how was that oxygen-rich environment formed?

"One potential way that oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field," said Lanza. "It's thought that at this time in Mars' history, water was much more abundant." Yet without a protective magnetic field to shield the surface from ionizing radiation, that radiation started splitting water molecules into hydrogen and oxygen. Because of Mars' relatively low gravity, it wasn't able to hold onto the very light hydrogen atoms, but the heavier oxygen atoms remained behind. Much of this oxygen went into the rocks, leading to the rusty red dust that covers the surface today. While Mars' famous red iron oxides require only a mildly oxidizing environment to form, manganese oxides require a strongly oxidizing environment. These results suggest that past conditions were far more oxidizing (oxygen-rich) than previously thought.

"It's hard to confirm whether this scenario for Martian atmospheric oxygen actually occurred," Lanza added. "But it's important to note that this idea represents a departure in our understanding for how planetary atmospheres might become oxygenated." So far, abundant atmospheric oxygen has been treated as a so-called biosignature, or a sign of existing life.

The next step in this work is for scientists to better understand the signatures of non-biogenic versus biogenic manganese, which is directly produced by microbes. If it's possible to distinguish between manganese oxides produced by life and those produced in a non-biological setting, that knowledge can be directly applied to Martian manganese observations to better understand their origin.

The high-manganese materials were found in mineral-filled cracks in sandstones in the Kimberley region of Gale crater, which the Curiosity rover has been exploring for the last four years. But that's not the only place on Mars that abundant manganese has been found. The Opportunity rover, which has been exploring Mars since 2004, also recently discovered high-manganese deposits in its landing site thousands of miles from Curiosity, which supports the idea that the conditions needed to form these materials were present well beyond Gale crater.

###

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Media Contact

Laura Mullane
mullane@lanl.gov
505-667-6012

 @LosAlamosNatLab

http://www.lanl.gov 

Laura Mullane | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>