Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ChemCam findings hint at oxygen-rich past on Mars

28.06.2016

Curiosity rover's discovery of manganese oxide points to a more Earth-like planet

The discovery of manganese oxides in Martian rocks might tell us that the Red Planet was once more Earth-like than previously believed. A new paper in Geophysical Research Letters reveals that NASA's Curiosity rover observed high levels of manganese oxides in Martian rocks, which could indicate that higher levels of atmospheric oxygen once existed on our neighboring planet. This hint of more oxygen in Mars' early atmosphere adds to other Curiosity findings--such as evidence of ancient lakes--revealing how Earth-like our neighboring planet once was.


The Curiosity rover examines the Kimberley formation in Gale crater, Mars. In front of the rover are two holes from the rover's sample-collection drill and several dark-toned features that have been cleared of dust (see inset images). These flat features are erosion-resistant fracture fills that are composed of manganese oxides, which require abundant liquid water and strongly oxidizing conditions to form. The discovery of these materials suggests that the Martian atmosphere might once have contained higher abundances of free oxygen than in the present day.

Credit: MSSS/JPL/NASA (PIA18390)

"The only ways on Earth that we know how to make these manganese materials involve atmospheric oxygen or microbes," said Nina Lanza, a planetary scientist at Los Alamos National Laboratory and lead author on the study published in the American Geophysical Union's journal. "Now we're seeing manganese-oxides on Mars and wondering how the heck these could have formed."

Lanza uses the Los Alamos-developed ChemCam instrument that sits atop Curiosity to "zap" rocks on Mars and analyze their chemical make-up. This work stems from Los Alamos National Laboratory's experience building and operating more than 500 spacecraft instruments for national defense, giving the Laboratory the expertise needed to develop discovery-driven instruments like ChemCam. In less than four years since landing on Mars, ChemCam has analyzed roughly 1,500 rock and soil samples.

Microbes seem a far-fetched explanation for the manganese oxides at this point, said Lanza, but the idea that the Martian atmosphere contained more oxygen in the past than it does now seems possible. "These high-manganese materials can't form without lots of liquid water and strongly oxidizing conditions," said Lanza "Here on Earth, we had lots of water but no widespread deposits of manganese oxides until after the oxygen levels in our atmosphere rose due to photosynthesizing microbes."

In the Earth's geological record, the appearance of high concentrations of manganese is an important marker of a major shift in our atmosphere's composition, from relatively low oxygen abundances to the oxygen-rich atmosphere we see today. The presence of the same types of materials on Mars suggests that something similar happened there. If that's the case, how was that oxygen-rich environment formed?

"One potential way that oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field," said Lanza. "It's thought that at this time in Mars' history, water was much more abundant." Yet without a protective magnetic field to shield the surface from ionizing radiation, that radiation started splitting water molecules into hydrogen and oxygen. Because of Mars' relatively low gravity, it wasn't able to hold onto the very light hydrogen atoms, but the heavier oxygen atoms remained behind. Much of this oxygen went into the rocks, leading to the rusty red dust that covers the surface today. While Mars' famous red iron oxides require only a mildly oxidizing environment to form, manganese oxides require a strongly oxidizing environment. These results suggest that past conditions were far more oxidizing (oxygen-rich) than previously thought.

"It's hard to confirm whether this scenario for Martian atmospheric oxygen actually occurred," Lanza added. "But it's important to note that this idea represents a departure in our understanding for how planetary atmospheres might become oxygenated." So far, abundant atmospheric oxygen has been treated as a so-called biosignature, or a sign of existing life.

The next step in this work is for scientists to better understand the signatures of non-biogenic versus biogenic manganese, which is directly produced by microbes. If it's possible to distinguish between manganese oxides produced by life and those produced in a non-biological setting, that knowledge can be directly applied to Martian manganese observations to better understand their origin.

The high-manganese materials were found in mineral-filled cracks in sandstones in the Kimberley region of Gale crater, which the Curiosity rover has been exploring for the last four years. But that's not the only place on Mars that abundant manganese has been found. The Opportunity rover, which has been exploring Mars since 2004, also recently discovered high-manganese deposits in its landing site thousands of miles from Curiosity, which supports the idea that the conditions needed to form these materials were present well beyond Gale crater.

###

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWXT Government Group, and URS, an AECOM company, for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Media Contact

Laura Mullane
mullane@lanl.gov
505-667-6012

 @LosAlamosNatLab

http://www.lanl.gov 

Laura Mullane | EurekAlert!

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>